
Formalising, improving, and reusing
the

Java Module System

Rok Strniša
St. John’s College

This dissertation is submitted for the degree of Doctor of Philosophy

Abstract

Java has no module system. Its packages only subdivide the class namespace, allowing
only a very limited form of component-level information hiding. A Java Community
Process has started designing the Java Module System, a module system for Java 7, the
next version of Java. The extensive draft of the design is written only in natural language
documents, which inevitably contain many ambiguities.

We design and formalise LJAM, a core of the module system. Where the informal
documents are complete, we follow them closely; elsewhere, we make reasonable choices.
We define the syntax, the type system, and the operational semantics of this core, defining
these rigorously in the Isabelle/HOL automated proof assistant. We highlight the underly-
ing design decisions, and discuss several alternatives and their benefits.

Through analysis of our formalisation, we identify two major deficiencies of the
module system: (a) its class resolution is unintuitive, insufficiently expressive, and fragile
against incremental interface evolution; and (b) only a single instance of each module
is permitted, which forces sharing of data and types, and so makes it difficult to reason
about module invariants. We propose modest changes to the module language, and to the
semantics of the class resolution, which together allow the module system to handle more
scenarios in a clean and predictable manner. To develop confidence, both theoretical and
practical, in our proposals, we (a) formalise in Ott the improved module system, iJAM, (b)
prove in Isabelle/HOL mechanised type soundness results, and (c) give a proof-of-concept
implementation in Java that closely follows the formalisation.

Both of the formalisations, LJAM and iJAM, are based on Lightweight Java (LJ),
our minimal imperative fragment of Java. LJ has been a good base language, allowing
a high reuse of the definitions and proof scripts, which made it possible to carry out this
development relatively quickly, on the timescale of the language evolution process.

Finally, we develop a module system for Thorn, an emerging, Java-like language
aimed at distributed environments. We find that local aliasing and module-prefixed type
references remove the need for boundary renaming, and that in the presence of multiple
module instances, care is required to avoid ambiguities at de-serialisation.

We conclude with a high-level overview of the interactions between the desired
properties and the language features considered, and discuss possible future directions.

Declaration

This thesis:

• is the result of my own work and includes nothing which is the outcome of work
done in collaboration except where specifically indicated in the text;

• is not substantially the same as any that I have submitted for a degree or diploma or
other qualification at any other university; and

• does not exceed the prescribed limit of 60,000 words.

Rok Strniša
May 2010

Acknowledgements

First, I would like to thank my family for all their moral and financial support throughout
my studies. Without them, achieving a Ph.D. at University of Cambridge would have been
much harder, if not impossible.

Peter Sewell and Matthew Parkinson, my Ph.D. supervisors, have provided me with
all the attention, knowledge and advice a Ph.D. student could ask for. They helped me
craft the big picture, while often also giving key insights and ideas for solving specific
problems I faced.

I thank Jan Vitek, Doug Lea, Alex Buckley and Stanley Ho for introducing me to the
topic of module systems for Java, for providing me with many documents related to the
topic, and for extensive discussion.

The Thorn team, whom I have had the pleasure of collaborating with, has been most
helpful with the design of the draft module system for the language. At the time, the
team included John Field, Jan Vitek, Tobias Wrigstad, Johan Östlund, Bard Bloom, Nate
Nystrom, and Gregor Richards.

I also thank Sriram Srinivasan, Silvia Breu, Tom Ridge, Alisdair Wren, Viktor Vafei-
adis, Nobuko Yoshida, Simon Peyton Jones, John Billings, Sam Staton, and Jat Singh for
useful comments on this work.

I would like to thank my examiners, Gavin Bierman and Sophia Drossopoulou, for
thorough analysis of my work, and for many valuable comments and suggestions.

Finally, I acknowledge funding from two EPSRC grants: GR/T11715/01 and DTA-
RG44132.

Contents

Abstract 3

Declaration 5

Acknowledgements 7

Contents 9

List of figures 13

List of symbols 15

1 Introduction 23
1.1 The Java Module System . 25

1.1.1 The WebCalendar example . 26
1.1.2 Component-level information hiding 26
1.1.3 Dealing with JAR hell . 27
1.1.4 Using the module system . 29
1.1.5 A short summary of JMS’s features 30

1.2 Desirable properties of a module system 31
1.3 Thesis . 34
1.4 Contribution . 35
1.5 Collaboration . 37
1.6 Preliminaries . 37

1.6.1 A brief introduction to Ott . 38
1.6.2 A brief introduction to Isabelle/HOL 39

2 Related work 41
2.1 Verified language formalisms . 41
2.2 Module systems . 42

2.2.1 A short overview of JMS . 42

9

2.2.2 OSGi . 42
2.2.3 .NET . 47
2.2.4 OCaml . 49
2.2.5 Jiazzi . 50
2.2.6 General overview . 53

3 Lightweight Java (LJ) 57
3.1 Example program . 58
3.2 Syntax . 59
3.3 Operational semantics . 60

3.3.1 Configuration (config) . 60
3.3.2 Lookup functions . 61
3.3.3 Statement reduction (config −→ config ′) 66
3.3.4 Variable translation (θ ` s s ′) 67

3.4 Type system . 67
3.4.1 Type (τ) . 67
3.4.2 Type environment (Γ) . 68
3.4.3 Subtyping (P ` τ≺ τ ′) . 69
3.4.4 Valid type (P ` τ) . 69
3.4.5 Type reflexivity . 71
3.4.6 Type transitivity . 71

3.5 Type checking . 71
3.5.1 Lookup functions . 71
3.5.2 Well-formedness rules . 73

3.6 Proof of type soundness . 76
3.6.1 Configuration well-formedness (Γ ` config) 77
3.6.2 Helper lemmas . 78
3.6.3 Progress . 79
3.6.4 Type preservation . 81

3.7 Conclusion . 84

4 Lightweight Java Module System (LJAM) 85
4.1 An informal description . 87
4.2 Syntax . 88

4.2.1 Compile-time code vs. runtime code 88
4.2.2 LJAM’s context (ctx) . 89
4.2.3 User syntax . 90
4.2.4 Inner syntax . 91

4.3 Operational semantics . 91

10

4.3.1 Lookup functions . 92
4.3.2 Administrator actions . 98
4.3.3 Context insertion . 100

4.4 Type system . 101
4.4.1 Type (τ) . 101
4.4.2 Subtyping (P ` τ≺ τ ′) . 101
4.4.3 Type reflexivity . 102
4.4.4 Type transitivity . 102

4.5 Type checking . 103
4.6 Proof of type soundness . 106

4.6.1 Progress . 106
4.6.2 Type preservation . 107

4.7 Recent changes to the Java Module System 109
4.8 Conclusion . 109

5 Problems with the Java Module System 111
5.1 Class resolution . 111

5.1.1 Unintuitive class resolution . 112
5.1.2 Inexpressive class resolution . 113

5.2 Inflexible module instantiation . 115
5.3 Shallow validation . 118
5.4 A stronger form of information hiding 118
5.5 Conclusion . 119

6 Improved Java Module System (iJAM) 121
6.1 Syntax . 121

6.1.1 User syntax . 121
6.1.2 Inner syntax . 122

6.2 Operational semantics . 123
6.2.1 Adapted class resolution . 123
6.2.2 Replication policies . 125

6.3 Type system . 127
6.4 Type checking . 127
6.5 Proof of type soundness . 128

6.5.1 Well-formedness for boundary renaming 129
6.6 Reuse within the definitions and proof scripts 130

7 Implementation 131
7.1 Overview . 131

11

7.2 Creation of module instances . 132
7.3 Class resolution . 132
7.4 Making the JVM use our code . 134
7.5 Example runs . 134
7.6 A limitation . 137
7.7 Conclusion . 137

8 Case study — Thorn 139
8.1 Non-intrusiveness . 141
8.2 Namespace control & robustness . 142
8.3 Sharing vs. isolation . 143
8.4 Module-level generics . 144
8.5 Module archives . 145
8.6 Overview of the high-level syntax . 146
8.7 Components and (de-)serialisation . 146
8.8 Versions and other custom properties . 148
8.9 Conclusion . 148

9 Conclusion 151

A Dependency among lemmas and theorems 157

B LJ’s proof of progress in Isabelle/HOL 159

C Other relational definitions 163
C.1 LJ lookup rules . 163
C.2 LJAM lookup rules . 169
C.3 LJAM context insertion rules . 175
C.4 iJAM lookup rules . 176

D iJAM example Java source code 179
D.1 XMLParser.Parser . 179
D.2 XSLT.Config . 179
D.3 ServletEngine.Config . 180
D.4 ServletEngine.UnitTest . 180
D.5 WebCalendar.UnitTest . 180
D.6 WebCalendar.Main . 180

Bibliography 181

Index 187

12

List of Figures

1.1 Java packages in our example, and dependencies among them 26
1.2 The example with module definitions . 27
1.3 The module files defining the example’s module definitions 28
1.4 The solution to the example JAR hell problem 29
1.5 The connections among the desired properties/features of a module system. 32

2.1 Overview of properties/features for a few related module systems 54

3.1 LJ user syntax . 59
3.2 Abstract syntax used for representing an LJ program’s state 61
3.3 LJ’s small-step operational semantics for statements 65
3.4 LJ’s variable translation within method calls 68

4.1 LJAM’s changes to the class syntax . 90
4.2 LJAM’s inner syntax, and the syntax of its administrator actions 92
4.3 LJAM’s class resolution order . 95
4.4 LJAM’s operational semantics for administrator actions 99
4.5 LJAM’s operational semantics for internal administrator actions 100
4.6 LJAM’s well-formed program change 108

5.1 LJAM’s unintuitive and inexpressive class resolution 112
5.2 A more intuitive, but still inexpressive, class resolution 113
5.3 Adapted class resolution with module-boundary renaming 114
5.4 Accessing two different versions from a single context 115
5.5 Generating multiple instances of a single module definition 117

6.1 iJAM’s changes to user syntax . 122
6.2 iJAM’s changes to the inner syntax . 123
6.3 iJAM’s class resolution order . 124
6.4 Accessing two different versions from a single context 125
6.5 iJAM’s operational semantics for initialisation actions 126

13

6.6 iJAM’s updated well-formedness relations 128
6.7 No renaming of classes exported by the core library 130
6.8 Reuse within the language definitions and their proof scripts 130

7.1 Implementation of LJAM’s/iJAM’s class resolution 133
7.2 The module-level source code for the example program 135
7.3 The high-level structure of the example program 135
7.4 The example program (modified) . 136

8.1 Dining Philosophers in Thorn . 140

9.1 Overview of properties/features for our module systems 155

14

List of symbols

General presentation rules for symbols

Syntax Description

X X1..Xn for some n.

Xk
k

X1..Xk ..Xn for some n.
X c Not yet annotated (compile-time) code for later annotated (runtime) X .
Xopt Result of a lookup function that can return either X or null.
X⊥opt Like Xopt , except that the function can also abort (by returning ⊥).

Terminals, non-terminals, and meta-variables

Syntax Description Language1 Page(s)

Γ type environment L, J, I 68
θ variable mapping L, J, I 67
π method type, short for ‘τ → τ ’ L, J, I 73
τ see Type L, J, I ——
φ repository cache J, I 92, 123
a administrator action J, I 92
ali name alias T 142
am access modifier J, I 90
amn abstract module name I 122
bootstrap r bootstrap repository’s name J, I 92
br boundary renaming I 122
C class name L, J, I 59
cl see C L, J, I ——
cld class definition L, J, I, T 59, 90
cn class name T 142
config configuration L, J, I 61

continues on next page
1Abbreviation key: [L 7→ LJ ; J 7→ LJAM ; I 7→ iJAM ; T 7→ Thorn]

continued from previous page

core m name of the core module definition J, I 90
ctxcld short for ‘(ctx , cld)’ L, J, I 62
ctx context L, J, I 60, 89
dcl name of derived class L, J, I 59
def definition T 146
def or mc definition or module construct T 146
entity entity T 146
Exception exception L, J, I 61
f see Field L, J, I ——
fd field declaration L, J, I, T 59
Field field name L, J, I 59
file source file T 146
fqn fully-qualified name (of a class) L, J, I 59, 90
ga module-level, generic arguments T 144
H heap L, J, I 61
id non-fully-qualified name T 142
imp import statement I, T 122, 146
imp dep import dependency I 123
inc optional include of import T 145
include annotation to include import T 145
j index variable L, J, I 59
k see j L, J, I, T ——
L variable state L, J, I 61
l see j L, J, I ——
m module name (cannot be core m) J, I 90
mc module construct T 141
mdc module definition J, I 92, 123
md module instance J, I 92, 100, 123
mem membership declaration in a module file T 141
Method method name L, J, I 59
meth see Method L, J, I, T 59, 142
meth body method body L, J, I 59
meth def method definition L, J, I, T 59
meth sig method signature L, J, I 59
mf module file J, I 90, 121
MH module hierarchy J, I 92, 123
mhv module hierarchy value J, I 122

continues on next page

16

continued from previous page

mi module instance identifier J, I 90
mibr associated boundary renaming I 123
mn module name J, I, T 90, 142
m ali module name aliasing T 143
m loc module location override T 141
name possibly fully-qualified name T 142
nn natural number L, J, I 63
NPE null-pointer exception L, J, I 61
null invalid pointer value L, J, I 61
Object top class L, J, I 67
oid see Pointer L, J, I ——
own parameter to create a separate instance T 143
P program L, J, I 59, 92
pd package declaration J, I 90
pn package name J, I 90
Pointer object identifier L, J, I 61
private access modifier for module members T 143
public access modifier for module members J, I, T 90, 143
RC repository context J, I 92
rep import’s replication parameter T 143
repl replication modifier I 122
replicating replication policy annotation I 122
rn repository name (can be bootstrap r) J, I 92
r repository name J, I 91
R repository J, I 92
req replication parameter T 143
s statement L, J, I 59
singleton replication policy annotation I 122
SRC compile-time class definitions J, I 90
this reference to currently executing object L, J, I 60
TVar term variable L, J, I 59
Type type L, J, I 68
URI uniform resource identifier (URI) T 141
URL uniform resource locator (URL) T 141
v see Val L, J, I ——
va module’s value annotation T 144
Val value L, J, I 61

continues on next page

17

continued from previous page

value indicates a value module T 144
var see Var L, J, I ——
Var term variable L, J, I 59
vd variable declaration L, J, I 59
vis visibility declaration for a name T 143
vn variable name T 142
w see Val L, J, I ——
x see TVar L, J, I ——
y see TVar L, J, I ——

Judgements and functions

Syntax/Description Language2 Page(s)

(MH , mi, nn) ∈ reachable
there are nn module instances reachable from mi in MH

J 96

(P , ctx , cl , nn) ∈ path length
the length of the inheritance path for cl is nn

L, J, I 63

(P , mi , P ′) ∈ wf P change
well-formed program change (proof related)

J, I 108

`ctx meth def c meth def
context insertion for a method definition

J, I 175

`ctx s
c s
context insertion for a statement

J, I 175

`mi cld
c cld

context insertion for a class definition
J, I 175

`mi md
c md

module definition translation (instantiation)
J, I 175

` P
well-formed program

L, J, I 73, 104

Γ ` config
well-formed configuration

L, J, I 77

θ ` s s ′

variable translation for a statement
L, J, I 68

config −→ config ′

reduction of a statement
L, J, I 65

config
a−→ config ′

reduction of an administrative action
J, I 99

config
ia−−→ config ′

reduction of internal actions
J, I 100, 126

continues on next page2Abbreviation key: [L 7→ LJ ; J 7→ LJAM ; I 7→ iJAM]

18

continued from previous page

P ` τ
valid type

L, J, I 69

P ` τ≺ τ ′

subtyping
L, J, I 69, 101

P ` H
well-formed heap

L, J, I 77

P ` R
well-formed repository

J, I 104

P ` cld
well-formed class

L 74

P `τ meth def
well-formed method in τ

L, J, I 75

P `ctx (dcl , cl , fd ,meth def)
well-formed class in ctx (generic rule)

L, J, I 74

P `mi cld
well-formed class in mi

J, I 105

P `mi md
well-formed module instance

J, I 105, 128

P , Γ ` s
well-formed statement

L, J, I 76

P , Γ, H ` L
well-formed variable state

L, J, I 77

P , H ` vopt≺ τopt
well-formed value

L, J, I 78

MH ` φ
well-formed repository cache

J, I 104, 128

MH ` RC
well-formed repository context

J, I 104

RC ` MH
well-formed module hierarchy

J, I 105, 128

acyclic clds P
the class inheritance hierarchy in P is acyclic

L, J, I 63, 97

acyclic cldsmiP
the class inheritance hierarchy in P is acyclic (starting at mi)

J, I 97

acyclic mh MH
a module hierarchy is acyclic

J, I 96

class fields (cld) = fd
extract field declarations from a class

L, J, I 64

class methods (cld) = meth def
extract method definitions from a class

L, J, I 72

class name (cld) = dcl
extract the class name from a class

L, J, I 69

distinct fqns (cld)
fully-qualified names are distinct

J, I 95

continues on next page

19

continued from previous page

distinct names(P)
names of type definitions are distinct

L 74

fields (P , τ) = f opt
fields lookup in type τ

L, J, I 64

fields in path (ctxcld) = f
fields lookup in a class path

L, J, I 64

find cld (P , ctx , fqn) = ctxcldopt
class lookup

L, J, I 62, 93, 123

find cld in core (P , fqn) = ctxcldopt
class lookup in the core library module

J, I 93

find cld in imports (MH , mibr, fqn) = ctxcldopt
class lookup in the imports

I 124

find cld in imports(MH,mis, fqn) = ctxcldopt
class lookup in the imports

J 94

find cld in module (cld, fqn) = cldopt
class lookup in an import

J, I 94

find cld in self (cld, pn, fqn) = cldopt
class lookup in the same module

J, I 94

find md (RC , rn, mn) = rnmdcopt
module definition lookup

J, I 98

find md in mds (mdc, mn) = mdcopt
module definition lookup in a list

J, I 97

find md rec (RC , rn1, mn, nn) = rnmdcopt
module definition lookup (recursive part)

J, I 97

find meth def (P , τ , meth) = ctxmeth defopt
method definition lookup in type τ

L, J, I 64

find meth def in list (meth def , meth) = meth defopt
method definition lookup in a list

L, J, I 64

find meth def in path (ctxcld, meth) = ctxmeth defopt
method definition lookup in a path

L, J, I 64

find path (P , ctx , cl) = ctxcldopt
class path lookup with a class name

L, J, I 63

find path (P , τ) = ctxcldopt
class path lookup with a type

L, J, I 63

find path rec (P , ctx , cl , ctxcld) = ctxcldopt
class path lookup (recursive part)

L, J, I 62

find type (P , ctx , cl) = τopt
type lookup

L, J, I 62

ftype (P , τ , f) = τ ′

field type lookup in a type
L, J, I 72

ftype in fds (P , ctx , fd , f) = τ⊥opt
field type lookup in a list

L, J, I 73

ftype in path (P , ctxcld, f) = τopt
field type lookup in a path

L, J, I 72

continues on next page

20

continued from previous page

full name (cld) = fqn
extract the full name of a class

J, I 102

imp br (imp) = br
extract boundary renaming from an import statement

I 127

imp dep of (mdc, mi , imp) = imp dep
generate import dependency from mdc, mi and imp

I 126

imp name (imp) = m
extract the module name from an import statement

I 126

lift opts(τopt) = τ opt
lift a list of option types

L, J, I 73

md name (mdc) = mn
extract the module name from a module definition

J, I 99

mds rm (mdc1, md
c) = mdc2

remove a module definition from a list
J, I 99

method name (meth def) = meth
extract the method name from a method definition

L, J, I 74

methods (P , τ) = meth
method names lookup in τ

L, J, I 72

methods in path (cld) = meth
method names lookup in class path

L, J, I 72

mtype (P , τ , meth) = π
method type lookup

L, J, I 73

no core renaming P
there is no renaming of core classes in P

I 130

no core renaming in mibrs (P , mibr)
there is no renaming of core classes in mibr

I 130

package name (cld) = pn
extract the package name from a class

J, I 93

R body (R) = (mdc, φ)
extract repository’s contents

J, I 99

R name (R) = rn
extract repository’s name

J, I 104

R update (R, mdc, φ) = R′

update a repository with given contents
J, I 99

superclass name (cld) = cl
extract the name of the superclass from a class

L, J, I 62

21

1
Introduction

Division of labour increases both the quantity and the quality of goods produced or ser-
vices provided. Within a modern large corporation, layers of management are required to
select, organise, and lead highly specialised individuals in order to achieve a goal.

Similarly in computer software, large applications are typically built in several parts,
each performing a highly specific function. Programming languages used for writing these
applications normally provide a system that helps with the production, distribution, link-
ing, and execution of these parts. Such a system is commonly known as a module system,
while a single part is usually referred to as a module.

The modern understanding of a software module appeared with the concept of inform-
ation hiding introduced by Parnas in 1972 [10, p. 398]. The main idea is that modules
should not be based on a flowchart, i.e. a chart describing the control flow of a software
program, but rather in a way that hides from the other modules the design decisions that
are likely to change. With information hiding, a modular design can minimise redundancy,
and maximise opportunities for reuse [40].

Initially, the idea of information hiding was applied only on the source level, i.e. for
isolating and hiding bits of code that are likely to change. The concept of abstract data
types, introduced by Guttag in 1975 [10, p. 444], applies this idea to runtime objects. The
term ‘abstract data type’ refers to a class (or a group) of objects defined by a representation
independent specification. That is, one is concerned about what can be done with an object
(implementing some abstract data type), not how the various operations are implemented.

24 INTRODUCTION

Most general-purpose programming languages today are either imperative (e.g. C [44],
Java [19], C# [33]) or functional (e.g. SML [34], OCaml [24], Haskell [41]). The latter
treat computation as evaluation of mathematical functions, and tend to avoid state and
mutable data, i.e. most functions are guaranteed to produce the same result when called
twice with the same arguments. This does not hold for the former, since they describe
computation with a sequence of statements that manipulate the program state.

Many of the current functional languages, such as SML and OCaml, use a variation of
the ML module system [30]. In these languages, a module’s interface is normally defined
explicitly through a module signature, which can abstract away from the details of the
module’s implementation. Then, we can safely replace (without modifying any of the
client modules, i.e. modules that use this module) a module with any other module that
implements the same interface. Module interfaces allow separate compilation, i.e. each
module is compiled separately, after which the resulting program fragments are linked to-
gether. Module interfaces can also be abstract; that is, they can abstract away from the
representation of the data being exchanged, promoting even looser coupling among mod-
ules. Furthermore, ML-style module systems support functors, functions that can generate
modules, which provide developers with further opportunities for code reuse [22].

Object-oriented languages [5] are a sub-group of the imperative languages that are
based around objects, runtime embodiments of state and related functionality. In these
languages, classes are the main encapsulation mechanism; a class closely corresponds to
the idea of an abstract data type, since it describes all the instances (objects) of this class.
The key features are encapsulation (hiding parts of the implementation through the use of
accessibility constraints on both the state and the functionality of a class), class inherit-
ance (defining a child class in terms of its parent), and polymorphism (an object behaving
according to the definition of its class even when used as an instance of an ancestor class).
These languages normally support incremental, cut-off compilation [22, §8.3], i.e. compil-
ation where dependencies need to be present, but where the already-compiled ones do not
need to be re-compiled. This compilation scheme is well-suited for the common cyclic
dependencies among classes; conversely, most ML module systems do not permit recurs-
ive modules [13], which simplifies the type system and allows a linear initialisation order
consistent with dependencies among the modules. Classes are normally compiled into
separate files, which are linked dynamically (by the runtime environment) — while more
flexible than the ML’s link-then-execute approach, dynamic linking requires post-linking
checks [28] (that can fail at runtime) to ensure that classes are used correctly.

Even though a class can define inner classes, i.e. classes defined within a class, this
approach does not scale well: large groups of top-level classes are often required to im-
plement a single high-level component. Most object-oriented languages lack a high-level
module system that provides a way to encapsulate, package, distribute, deploy, link, and
execute such components as versionable units.

THE JAVA MODULE SYSTEM 25

In the following section (§1.1), we show how Java [19] (version 6), currently the most
popular general-purpose programming language [47], fails to satisfy some of the basic
properties of a high-level module system, and describe what its designers are proposing
for its next release. We then state our thesis (§1.3), outline our contributions and the
structure of this document (§1.4), and overview the related work (Chapter 2).

1.1 The Java Module System

Currently, the Java programming language [19] has no (high-level) module system. Its
packages are a filesystem-based mechanism, which enables only the subdivision of type
namespaces, and a very limited form of component-level information hiding.

More specifically, a package can hide a class from classes in other packages. How-
ever, a package cannot semantically contain another package, and any package can import
any other; therefore, any class can access any other non-hidden (public) class. There is
also no built-in support for package-level generics, versioning, type renaming, or multiple
(package) instances — all these concepts are described in §1.2.

Two Java Community Processes, JSR-277 [51] and JSR-294 [52], are developing
the Java Module System [54] (JMS1), a module system for Java 7, the next version of
Java [53]. It is aimed at bringing component-level information hiding (§1.1.2) to the lan-
guage, while simultaneously removing the need for complex systems of classloaders when
avoiding JAR hell (§1.1.3). It tries to do this in a way that (1) is easy to understand,
(2) makes its features available automatically, (3) is backward and forward bytecode-
compatible2 with the existing Java programs (on the new Java Virtual Machines), and
(4) does not modify the syntax of the underlying language.

We performed a careful analysis of the draft documents, i.e. the two Java Service Re-
quests (JSRs) [51, 52], which together exceed two hundred pages of natural language spe-
cification. More specifically, we formalise (i) the syntax for module files, (ii) the semantics
of the administrator actions (installing, un-installing, and initialising module definitions),
and (iii) class resolution, which searches for class definitions across package, module,
and repository boundaries. However, our formalisation excludes versions, custom import
policies (custom code that initialises module definitions, and links together the resulting
module instances), and support for legacy files.

In this section, we introduce the main ideas behind the module system, as we see them,
while Chapter 4 presents the syntax of its core, the associated operational semantics, and
more.

1There is currently no official abbreviation for “Java Module System.” JAM, used in our previous work,
now refers to a test implementation of the system. In this document, we use JMS to refer to the specification.

2A newer system is backward bytecode-compatible when it can deal with bytecode for an older system.
An older system is forward bytecode-compatible when it can deal with bytecode for a newer system.

26 INTRODUCTION

1.1.1 The WebCalendar example

Suppose we want to run a servlet that provides calendar services on our web server, in
existing Java. Our code (the webcalendar package) uses two third-party software
packages: the XSLT library (the xslt package), and the servlet engine (the engine
package). Both of these require an XML parser (the xml.parser package): the first to
create HTML from XML calendar data, and the second for its configuration files. Further-
more, the servlet engine uses a cache (the engine.cache package) to avoid overhead.
Figure 1.1 shows the dependency relation between the Java packages in our system.

webcalendar

enginexslt engine.cache

Key
requirespackage

xml.parser

Figure 1.1: Java packages in our example, and dependencies among them

Currently, all classes in our system have access to the public classes in any Java pack-
age, including engine.cache. Since the cache is logically part of the servlet engine,
we would like to make engine.cache’s public interface (its public classes) visible only
to the engine, i.e. to classes in package engine, and not also to the rest of the system.

A way of tackling this is to make engine.cache’s public interface package-private
instead, and then combine the contents of both engine and engine.cache into a
single package; however, the approach loses structure, and makes package-private inter-
faces of the original packages visible to all classes in the new, combined package.

1.1.2 Component-level information hiding

A better approach is to put both packages (engine and engine.cache) in a bigger
structure, which acts (almost) like a black box, so that, e.g., webcalendar, which is
outside this structure, cannot see its contents. This kind of a bigger structure is known as
a module definition; the term superpackage is also used. We refer to the module definition
holding the two packages as ServletEngine.

THE JAVA MODULE SYSTEM 27

The module definitions can also selectively leak parts of the interfaces of their con-
tents — we refer to this as selective exporting. For example, suppose there is a pub-
lic class Servlet in the engine package (within ServletEngine), and another public
class CalendarServlet in the webcalendar package (outside ServletEngine). If
we want to make Servlet visible to CalendarServlet, ServletEngine has to expli-
citly export Servlet, i.e. to explicitly reveal the bound name engine.Servlet.

Since module definitions are an abstraction layer above Java packages, we have to put
the webcalendar package inside its own module definition, WebCalendar, which then
imports the ServletEngine module definition, making engine.Servlet visible to the
whole webcalendar package. See Fig. 1.2 for the software design of our example, now
with module definitions. In JMS, a module definition cannot contain another; this allows,
for example, that both XSLT and ServletEngine import the same XMLParser.

WebCalendar
webcalendar

XSLT
(exports: xslt.Processor)

xslt

ServletEngine
(exports: engine.Servlet)

engine engine.cache

Key
imports

package

module definition

XMLParser
(exports: xml.parser.Parser)

xml.parser
public class

CalendarServlet

Servlet

Parser

Processor Cache

Figure 1.2: The example with module definitions

In general, importing a module definition makes its exported classes visible to the
members of the importer, while its non-exported classes, e.g. Cache in ServletEngine, re-
main invisible to the importers. Classes made available by the imports can be re-exported
— we refer to this feature as optional re-exporting.

The programmer defines a module definition through a module file. Each module file
specifies the module’s name, member Java packages, imported modules, exported classes,
and various other properties, e.g. a version. Figure 1.3 shows the example’s source code.

1.1.3 Dealing with JAR hell

In Java, a class is loaded into the runtime by a classloader. Normally, it is loaded from a
class file on the local file system, but it can also be loaded from elsewhere, or generated by

28 INTRODUCTION

module XMLParser {
member xml.parser;
export xml.parser.Parser; }

module XSLT { module ServletEngine {
member xslt; member engine; member engine.cache;
import XMLParser; import XMLParser;
export xslt.Processor; } export engine.Servlet; }

module WebCalendar {
member webcalendar;
import ServletEngine; import XSLT; }

Figure 1.3: The module files defining the example’s module definitions

reflection, and then possibly post-processed/checked before use [29]. A classloader main-
tains a map from fully-qualified names of classes3 to their definitions, which means that
these names have to be distinct for a particular classloader. Classes loaded or generated by
different classloaders have incompatible types — this makes sense, since the definitions
of the classes can be different even if their names match, and since they do not share their
static state. By default, classes are loaded by the system classloader.

We can easily have multiple versions of a class available to the system; however, a
classloader can load just one of these. When dependencies between classes are non-trivial,
one part of the system might require the classloader to load a certain group of classes,
while another part requires a different group of classes that have identical names. When
a classloader is told to load a class whose name matches the name of an already loaded
class, it simply ignores the command — in large programs, this normally leads to program
failures at seemingly random points during execution. Since groups of classes are nor-
mally distributed in the compressed format called JAR (Java ARchive), this phenomenon
is known as JAR hell.

In our example, this can happen if XSLT and ServletEngine require different versions
of XMLParser. This means that the system classloader would need to load two versions of
all xml.parser classes, which is not possible with a single classloader due to the above-
mentioned restrictions. Undesirable behaviour occurs either for XSLT or ServletEngine,
depending on which version of XMLParser is loaded first.

As mentioned above, each Java classloader creates its own class namespace. There-
fore, we can hold two different versions of a class through two custom classloaders in the
same Java runtime. If the same class is loaded by two different classloaders, two distinct
types will be created, each with its own copy of the static data.

A classloader can contain arbitrary code for generating or loading classes at runtime;
it can even delegate its resolution to another classloader. Such systems of classloaders

3A fully-qualified class name includes the name of a Java package that a class belongs to.

THE JAVA MODULE SYSTEM 29

are incredibly expressive, but also quickly become hard to understand, use, and debug
— the most common argument against using classloaders directly. For this reason, all
module systems for Java try to encapsulate classloader expressivity behind a user-friendly
interface, and the Java Module System is no exception.

A module instance is a runtime instance of a module definition. Each module instance
creates its own (1) types for entities defined within the corresponding module definition,
and (2) copy of any static data within those entities. It is a classloader in disguise.4

Therefore, JMS allows same-named classes in the system as long as they are within
different module instances. Figure 1.4 shows a solution to the above-described JAR hell
problem: there is a module instance for each of the two versions of the XMLParser mod-
ule definition. The XSLT module instance is linked to a different module instance of
XMLParser than ServletEngine. Since the linking of module instances coordinates the
classloading procedure, XSLT’s classes cannot access classes of ServletEngine’s XML-
Parser, and vice versa. The details of the module system, e.g. module initialisation and the
class resolution algorithm, are described in Chapter 4.

XMLParser<2.0>

XSLT ServletEngine

WebCalendar

webcalendar

enginexslt

xml.parser
(version 2.0)

engine.cache

Key
importspackage

module definition instance of

linked tomodule instance

XMLParser<3.0>

xml.parser
(version 3.0)

Figure 1.4: The solution to the example JAR hell problem

1.1.4 Using the module system

The module system does not change the underlying language: a developer writes the stand-
ard Java source files as before — this makes the source files forward and backward byte-
code compatible. He also writes module files (as in §1.1.2), which define the module
membership, the imports, the exports, and various other properties.

4Note that developers can still define their own classloaders — control over such custom classloading is
done through Java’s Security API. This is discussed further in Chapter 7.

30 INTRODUCTION

A module file is compiled into a module definition: compilation replaces each pack-
age name in the module file with the corresponding class definitions. Module definitions
are then (distributed and) installed in a Java runtime environment. Specifically, they are
installed into a repository, a runtime concept, through which an administrator of the sys-
tem can search for, install, uninstall, and initialise module definitions. There can be many
repositories at runtime to further control the dependency and isolation between different
module definitions. Repositories are organised into hierarchies with the bootstrap re-
pository as its root. The bootstrap repository always contains the core platform module
definition, which in turn contains all the classes within the core Java platform.

As in the case of JAR files, developers can specify the main class of module defin-
itions, i.e. the class whose main method will get executed when a module definition is
“executed.” In fact, JAR files are forward-compatible with module definitions, which are
not backward compatible (although JAR files can be embedded within module definitions).

When the user “executes” a module definition, e.g. WebCalendar, the module system
creates and links module instances of WebCalendar and of all module definitions it (re-
cursively) depends on, i.e. XMLParser, XSLT, and ServletEngine. Then, the execution
begins in the main class of the module instance originally executed.

A module definition can hold various properties, e.g. a version. An importer can re-
quest a module definition that satisfies certain property constraints. The module system
already supports this for the usual versioning scheme; however, it also allows custom
property annotations on module definitions, and custom import code. With the latter, the
developer can write Java code that is responsible for selecting and initialising imported
module definitions, and linking together the resulting module instances. While more ex-
pressive, custom import code is not guaranteed to terminate.

1.1.5 A short summary of JMS’s features

We have seen through examples that the Java Module System (JMS) can bring two long-
sought-for features to Java: better component-level information hiding, and versioning.

As described in the previous subsections, a module system administrator installs mod-
ule definitions into repositories. Depending on the relation between repositories, module
definitions in one repository will either all be accessible or all be inaccessible to module
definitions in another repository. Also, if all module definitions were installed in a single
repository, every module definition could import any other.

Java packages already support selective exporting. In addition to this, JMS modules
support optional re-exporting. In this thesis, we show that optional re-exporting has little
value if the module visibility relation is transitive (explained in §1.2) as in JMS, and
develop ways to restrict this property for both module instances and module definitions to
achieve better information hiding.

DESIRABLE PROPERTIES OF A MODULE SYSTEM 31

JAR hell (§1.1.3) is a serious problem for large Java applications. JMS introduces
versioning, which will, together with a smart use of classloaders underneath, provide an
easy solution to most classloading problems.

It is not hard to draw an analogy between concepts in the underlying Java language
and those in the Java Module System. For example, module files can be seen as Java
source files at the module level, module definitions as class files, and module instances as
objects. The main difference is that the modules operate on a higher level than classes, on
a level more suitable for packaging, distribution, and versioning. Finally, JMS modules
instances are not first-class members: once they are linked, they play no role except in the
(deterministic) semantics of classloading.

1.2 Desirable properties of a module system

There are many desirable properties of a module system; however, the two most important
are expressivity and scalability. The former states how many types of scenarios it can
handle, while the latter specifies how easy it is to manage a large and/or growing system.

Scalability depends on how intuitive the semantics of a module system is, how re-
usable and robust its modules are, and whether or not it supports separate compilation
— all of these sub-properties/features depend on how localised the influence of a single
module is, i.e. how far the names and policies of a single module necessarily propagate
(recursively) to its imports and its clients. Versioning is another important step towards
robustness, whereas operations of module composition, the ability to specify a module in
multiple files, and the ability to share runtime state among multiple programs, all improve
reusability. Furthermore, module instantiation policies, a good name resolution algorithm,
and various information hiding techniques contribute to a better localisation of a module’s
influence. The name resolution algorithm is influenced by the presence of module-prefixed
type references and renaming (includes renaming of exports by exporters, of exports by im-
porters, and of imports). Finally, information hiding is based on selective exporting, and
improved by optional re-exporting and non-transitive module visibility.

Expressivity heavily depends on parametricity and the name resolution algorithm. It
is improved by various, specific language features, such as recursive modules, first-class
modules, and sub-modules. Parametricity is often provided through functors/generics,
which depend on module interfaces, which in turn depend on module interfaces.

As described above, these properties and the related language features are heavily
interconnected. In Fig. 1.5, we try to illustrate these connections in a directed graph,
where the general meaning of an arrow is “contributes to,” while the boldness of an arrow
represents our opinion of the relative importance.

In this thesis, we focus on localising the influence of a single module through inform-

32 INTRODUCTION

in
fo

rm
at

io
n

hi
d

in
g

re
na

m
in

g
 ..

sc
al

ab
il

it
y

re
us

ab
il

it
y

ve
rs

io
ni

ng
ro

bu
st

ag
ai

ns
t

ch
an

g
e

pa
ra

m
et

ri
ci

ty

ex
pr

es
si

vi
ty

lo
ca

li
se

d
 i

nf
lu

en
ce

o
f

a
si

ng
le

 m
o

d
ul

e
se

pa
ra

te
co

m
pi

la
ti

o
n

in
tu

it
iv

e
se

m
an

ti
cs

na
m

e
re

so
lu

ti
o

n
al

g
o

ri
th

m

m
o

d
ul

e-
pr

ef
ix

ed
ty

pe
 r

ef
er

en
ce

s

m
o

d
ul

e
in

st
an

ti
at

io
n

po
li

ci
es

m
ul

ti
pl

e
fi

le
s

pe
r

m
o

d
ul

e

ru
nt

im
e

sh
ar

in
g

am
o

ng
 p

ro
g

ra
m

s

se
le

ct
iv

e
ex

po
rt

in
g

m
o

d
ul

e
in

te
rf

ac
es

o
pt

io
na

l
re

-e
xp

o
rt

in
g

no
n-

tr
an

si
ti

ve
m

o
d

ul
e

vi
si

bi
li

ty

su
b-

m
o

d
ul

es

fu
nc

to
rs

ab
st

ra
ct

in
te

rf
ac

es

re
cu

rs
iv

e
m

o
d

ul
es

im
pl

ic
it

g
en

er
ic

s

..
o

f
ex

po
rt

s
by

 e
xp

o
rt

er
s

..
o

f
ex

po
rt

s
by

 i
m

po
rt

er
s

..
o

f
im

po
rt

s

su
b-

m
o

d
ul

es
in

 o
w

n
fi

le
s

fi
rs

t-
cl

as
s

m
o

d
ul

es

o
pe

ra
ti

o
ns

 o
f

co
m

po
si

ti
o

n

Figure 1.5: The connections among the desired properties/features of a module system.
(The boldness of a box represents how involved this thesis is with a particular property/fea-
ture, while the boldness of an arrow represents our opinion of its relative contribution.)

DESIRABLE PROPERTIES OF A MODULE SYSTEM 33

ation hiding techniques, name resolution algorithms, and module instantiation policies.
We then show how this leads to more robust modules and a more intuitive semantics. We
also research the expressivity of the different name resolution algorithms in the presence
of module instantiation policies. Finally, we briefly discuss the importance of module-
prefixed type references and sub-modules. In Fig. 1.5, the boldness of a border represents
how involved this thesis is with a particular property/feature.

Following are the brief descriptions of the non-trivial properties/features mentioned
above that also appear in Fig. 1.5 and are referenced throughout this thesis:

first-class modules Modules that can be treated as values in the underlying language.

parametricity The module system supports functions that produce modules.

localised influence of a module This property expresses how far the names and policies
of a single module necessarily propagate (recursively) to its imports and its clients.

module-prefixed type references Type references can refer to specific modules.

multiple files per module A module can be defined in several files.

module instantiation policies The developer can specify when new instances of a mod-
ule definition are created, and when they are shared.

name resolution algorithm Defines how a type’s definition is found given a type name.

non-transitive module visibility If module A can see module B, and module B can see
module C, A does not necessarily see C.

operations of composition Well-defined and normally type-safe procedures of combin-
ing parts of a module (or whole modules) into larger parts (or whole modules).

optional re-exporting A module can export (non-hidden) members of imported modules.

recursive modules Modules that permit cycles in the module import graph.

renaming of exports by exporters The internal and the external names for a type of a
module can differ.

renaming of exports by importers An imported type can be bound under a different
name within the client module.

renaming of imports The code within the client module can refer to an imported module
under a different name.

runtime sharing among programs A type’s static data can be shared among programs.

selective exporting A module can hide any of its members.

separate compilation Ability to compile a module definition in isolation, or with only
the public interfaces of its imports available.

sub-modules A module can semantically contain another module.

sub-modules defined in own files A module and its sub-module can be defined in differ-
ent files.

versioning Modules can be versioned, and imported according to their versions.

34 INTRODUCTION

1.3 Thesis

Although the Java Module System is a great improvement over Java packages, there is
much left to be desired. We claim that:

• the lack of explicit module interfaces together with the parent-then-self name resol-
ution (discussed in Chapter 5) leads to poor support for localisation of a module’s
influence and for code reuse; and

• the absence of module-prefixed references (due to backward compatibility) results
in fragile and inexpressive semantics for the end user.

Once a software product, e.g. programming language or a software module, is re-
leased, its clients usually become heavily dependent on its definition. If such a definition
contains errors, the best fix likely breaks much of the clients’ code. Since this is highly
undesirable, the developers of such a product usually try to find a non-optimal, but a
backward-compatible, solution, or simply let clients find a work-around.

A well-designed module system of a programming language can relatively easily limit
the dependencies of clients on a software module, but it cannot eliminate them in gen-
eral. Capturing a part of a programming language definition within a module, on the other
hand, is substantially more difficult, since parts of a language often rely on each other’s
subtle details. It is well known that software development for both applications and pro-
gramming languages is (at least at the moment) significantly less costly than software
maintenance [17]. Therefore, it is only logical to put more effort into preventing errors of
a software product before its release.

Recently, tools for formalising and verifying programming language definitions have
improved substantially: from software tools that help you write the definition [46], to
programs that help you state and verify the proofs of language properties [1–4]. Most
modern programming languages and their specific features, however, are still defined in
natural language documents with hardly any or no formalisation. We believe that a rigor-
ous formalisation of a programming language (and its add-ons):

• gives a valuable insight into the details of the semantics;

• promotes a precise discussion of the definition;

• allows important properties to be proven about the language;

• can find subtle errors and potential problems early (before release); and

• is cost-effective, and can be done on the same timescale as the industrial design and
standardisation process.

Finally, we believe that formalisations of language definitions and their proof scripts
can be modularised, and the ‘language modules’ reused.

CONTRIBUTION 35

1.4 Contribution

The draft documents describing the design of the Java Module System [51, 52] are written
solely in natural language, which means they inevitably contain many ambiguities. We
formalise the core of this module system: whenever possible, we follow the informal
description closely; for the remainder, we try to capture what we believe is the intended
semantics. We call this formalisation the Lightweight Java Module System (LJAM).

We identify and discuss two key deficiencies of the module system: (a) its class resolu-
tion is unintuitive, insufficiently expressive, and fragile against incremental interface evol-
ution; and (b) a highly inflexible module instantiation that makes it difficult to reason about
module invariants. We then develop and precisely define clean solutions that (i) make
class resolution intuitive and flexible (through class renaming and an adapted resolution
algorithm), and (ii) allow developers to control the sharing of module instances (through
custom policies). The solutions are modelled on top of LJAM, producing the Improved
Java Module System (iJAM). As a proof of concept, we also implement a module system
on top of Java, which can follow the semantics of either LJAM or iJAM.

LJAM and iJAM share a common base: Lightweight Java (LJ), a minimal imperative
core of Java. Initially, we designed LJ as a base language for the two formalisations.
Through this process, LJ has been abstracted to the point where we think it can be used
for experimentation. In fact, LJ has already been used by others to formalise “features” in
LFJ [14].

All our formalisations are expressed rigorously: with the help of Ott [46], we define
their syntax, type system and operational semantics, producing (from a single source) both
human-readable typeset rules and machine-processed mathematics for the Isabelle/HOL
proof assistant [3]. We also mechanically prove type soundness for all our formalisms.

Finally, we develop a draft module system for Thorn, an emerging Java-like language
for distributed computing. Here, we examine the effects of (i) module-prefixed type refer-
ences on namespace localisation, and (ii) multiple module instances on de-serialisation.

More specifically, our contributions are:

• the design and formalisation of LJ (Chapter 3);

• a lightweight introduction to the Java Module System (§1.1);

• a detailed formalisation of the module system, producing LJAM (Chapter 4);

• identification of its two major deficiencies (Chapter 5);

• precise and clean solutions to them (Chapter 5);

• formalisation of these solutions, producing iJAM (Chapter 6);

• Isabelle/HOL type soundness proofs for LJ (§3.6), LJAM (§4.6), and iJAM (§6.5);

• an implementation that can model both LJAM and iJAM (Chapter 7); and

• a draft design of a module system for Thorn (Chapter 8).

36 INTRODUCTION

While the following chapter is devoted to related work (Chapter 2), the rest of the
thesis is structured as follows:

Chapter 3 When reasoning about language features, it is a good idea to limit the under-
lying language to avoid dealing with unnecessary details. However, a key concept
of the language – state – even though present in the first formal model of Java [16],
is absent from the most widely used formal model [23]. This chapter presents LJ, a
minimal imperative core of Java, which we build upon in the later chapters.
Note: If the reader is eager to start with modules, we suggest at least skimming
through LJ’s syntax (Fig. 3.1 and Fig. 3.2), and LJ’s definition for a type (§3.4.1),
and then skipping to the start of Chapter 4.

Chapter 4 The draft of the Java Module System’s design is written in natural language
documents, which inevitably contain many ambiguities. The chapter describes our
formalisation of the core of the module system on top of LJ. The formalisation,
named the Lightweight Java Module System, creates an essential basis for precise
discussion of the key design decisions.

Chapter 5 Through analysis of LJAM, we identify two major deficiencies of the module
system: (a) its class resolution is unintuitive, insufficiently expressive, and fragile
against incremental interface evolution; and (b) only a single instance of each mod-
ule is permitted, which forces sharing of data and types, and so makes it difficult
to reason about module invariants. We propose modest changes to the module lan-
guage, and to the semantics of the class resolution, which together allow the module
system to handle more scenarios in a clean and predictable manner.

Chapter 6 To develop theoretical confidence in our informal proposals for improvement
of the module system, we formalise them in an extension of LJAM, named iJAM,
and mechanically show that type soundness is preserved.

Chapter 7 To show that our proposals can be put into practice, we give a proof-of-concept
implementation that follows most of iJAM’s semantics with modules that can con-
tain any Java code. The implementation is also able to enter a compatibility mode,
where it follows the LJAM’s semantics, instead.

Chapter 8 We develop a module system for Thorn, where we find that module-prefixed
type references remove the need for boundary renaming, and that in the presence of
multiple module instances, ambiguities can arise during de-serialisation.

Chapter 9 Finally, we give a high-level overview of the interactions between the desired
properties and the language features considered, and discuss possible future work.

COLLABORATION 37

1.5 Collaboration

The work on LJ (Chapter 3) and LJAM (Chapter 4) was published at OOPSLA’07 [50]:

The Java Module System: Core Design and Semantic Definition
Rok Strniša, Peter Sewell, and Matthew J. Parkinson.

The work on iJAM (Chapter 5 and Chapter 6) and the implementation (Chapter 7) ap-
peared at FTfJP’08 (a satellite workshop of ECOOP’08) [48]:

Fixing the Java Module System, in Theory and in Practice
Rok Strniša.

The work on Thorn (Chapter 8) was accepted to OOPSLA’09 [8]:

Thorn—Robust, Concurrent, Extensible Scripting on the JVM
Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund, Gregor Richards,
Rok Strniša, Jan Vitek and Tobias Wrigstad.

1.6 Preliminaries

All syntax definitions, semantic rules, and language terms in this document are checked by
Ott [46]; the tool also generates their LATEX. Keywords are printed in bold, meta-variables
in italic, and constants in typewriter font. The over-bars indicate lists, e.g. cl is a list
of cl ’s. Non-trivial terms and propositions are surrounded with single quotation marks or
brackets. There is also a list of symbols (page 15), and an index (end of the document).

Unless specified otherwise, all lemmas and theorems in this document are taken dir-
ectly from the Isabelle/HOL [3] scripts — variables not bound explicitly (within a lemma
or a theorem) are universally bound implicitly. Similarly, the proofs in the document are
natural language versions of the corresponding, mechanically-verified proofs written in
Isabelle/HOL. In the appendix, there is a segment of the Isabelle/HOL script.

All our semantic rules are defined as inductive relations in Ott. Some of these relations,
e.g. the class resolution, are functions, and are easier to deal with in a theorem prover if ex-
pressed as such. For those, we wrote Isabelle/HOL functions, and proved equivalence (in
Isabelle/HOL) between the Ott-generated relations and the corresponding functions. Since
the original relations are quite verbose, we put those in the appendix. In the main text, we
present the more compact Isabelle/HOL functions using an OCaml-like syntax [24], while
using Ott to generate LATEX for language terms — this makes the functions compact and
readable, and their presentation consistent with syntax definitions and semantics rules.

We highlight larger changes in semantic rules, lemmas, and theorems from one lan-
guage to the next. Added formalisms are displayed normally (not highlighted), while
unchanged ones are mentioned and skipped.

38 INTRODUCTION

1.6.1 A brief introduction to Ott

Ott [46] is a tool for writing definitions of programming languages and calculi. It takes
as input a definition of a language syntax and semantics, in a concise and readable ASCII
notation that is close to what one would write in informal mathematics. It generates LaTeX
to build a typeset version of the definition. Furthermore, it can output Coq [1], HOL [2],
and/or Isabelle [3] versions of the definition; in this thesis, we generate and use Isabelle
definitions only.

In Ott, we can define structures with BNF meta-syntax. That is, each production of a
meta-term defines a data constructor for that meta-type. Ott then generates a data type in
Isabelle/HOL for each such meta-type.

n ::= natural number — Ott-generated data type
| 0 data constuctor ‘zero’
| Succ n data constructor ‘successor’

While the BNF notation is normally used only for constructive definitions, e.g. n,
we can use BNF in Ott to define an abstract meta-type, e.g. nn below. The underlying
representation of an abstract meta-type (in our formalisations) is an Isabelle/HOL type,
while its interface are the corresponding meta-productions (indicated by the letter M).
The corresponding Isabelle/HOL type, e.g. nat, is always displayed in brackets within
the main comment of each such meta-term, e.g. nn. The meta-productions correspond to
Isabelle/HOL functions,5 which return a meta-term of the appropriate meta-type — note
that, for this reason, we cannot specify non-meta-productions for an abstract meta-type.

nn ::= natural number — Isabelle/HOL type (nat)
| 0 M Isabelle/HOL literal ‘0’
| 1 M Isabelle/HOL literal ‘1’
| nn + nn ′ M uses Isabelle/HOL’s ‘+’

However, meta-productions can be specified for a non-abstract meta-type, e.g. n.

n ::= natural number — Ott-generated data type
| 0 data constuctor ‘zero’
| Succ n data constructor ‘successor’
| n + n ′ M uses our Isabelle/HOL function for addition of n’s

In our formalisations, we use nn for representing natural numbers. Note that we only
need to write meta-productions for the natural numbers that we use within our semantic
rules. Another important rule to note here is that, in Ott, the name of a meta-variable,

5The Isabelle/HOL functions that implement the meta-productions are not shown in Ott’s LATEX output.

PRELIMINARIES 39

e.g. nn, must be identical to the name of its meta-type; however, a meta-variable can
include a number, an index variable, and/or prime symbols, e.g. nn ′′2 .

As noted before, cl in Ott stands for a list of cl . Furthermore, it is possible to refer
to ‘some element within the list,’ and indirectly to ‘the length of the list.’ For example,
clk

k
is short for clk

k∈1..n
, or cl1..clk ..cln , or cl1..cln , for some (unspecified) length n.

The k in the subscript implies that clk is referring to the k-th element in the list, while
the k in the superscript (next to the overline) states that this list ranges over all elements,
i.e. where k = 1..n. The index variables, e.g. k , are bound per semantic rule, which
means that specifying both clk

k
and vark

k within the same semantic rule implies that
clk

k
and vark

k are of the same (unspecified) length, and that clk vark
k

is an element-

wise pairing of the two lists. Using the same philosophy, clk varj
k

j

is a shorthand for
clk var1

k
..clk varj

k
..clk varm

k
for some m. Note that an index variable also specifies the

identity of a list, which implies that clk
k

is not automatically unifiable with clj
j

or cl .
Finally, the two dots in cl1..cln imply that the list could be empty, i.e. n ∈ N, while the
three dots in cl1...cln imply that the list has at least one element, i.e. n ∈ N+.

A good analogy to Ott’s list notation (described above) is the sum notation in mathem-
atics. The table below displays a couple of comparisons.

Full expression Standard Short

Math x1 + ..+ xi + ..+ xm

m∑
i=1

xi

∑
i

xi

Ott x1 ..xi ..xm xi
i∈1 ..m xi

i

Math
m∑

i=1

y1 xi + ..+
m∑

i=1

yj xi + ..+
m∑

i=1

ynxi

n∑
j=1

m∑
i=1

yj xi

∑
j

∑
i

yj xi

Ott y1 xi
i∈1 ..m ..yj xi

i∈1 ..m ..yn xi
i∈1 ..m yj xi

i∈1 ..m j∈1 ..n
yj xi

i
j

1.6.2 A brief introduction to Isabelle/HOL

Isabelle [3] is a generic proof assistant. It allows mathematical formulae to be expressed
in a formal language and provides tools for proving those formulae in a logical calculus.

Isabelle/HOL is a specialisation of Isabelle for Higher Order Logic (HOL), providing
a higher-order logic theorem proving environment for large applications. The user of Isa-
belle/HOL writes theories, which are collections of declarations, definitions, and proofs.
Both declarations and definitions highly resemble declarations and definitions in OCaml,
respectively; however, each function defined within Isabelle must provably terminate.

Proofs or lemmas within Isabelle/HOL have the following form:

proof/lemma name: "proposition"
proof steps

done

40 INTRODUCTION

When compiling a proof, Isabelle/HOL verifies that proof steps reduce proposition to
True. The proof steps can involve built-in axioms, various definitions, already compiled
lemmas and theorems, and tactics (algorithms for applying axioms, definitions, lemmas
and theorems). Note that the variables not bound explicitly within the proposition are
universally bound implicitly.

As an example, we include in Appendix B our Isabelle/HOL script that proves the
progress property of LJ (Chapter 3). The rest of the proof script can be found online as
indicated in the following chapters.

2
Related work

This thesis is concerned with the design and the formalisation of programming languages
and their features, focusing on module systems for object-oriented languages. While there
are currently only a few other mechanically-verified language formalisms, module system
designs are numerous. We overview both of these categories in the following sections.

2.1 Verified language formalisms

No programming language used widely in the industry, e.g. Java [19] or C# [33], has a
complete formalisation. SML [34] is currently the only general-purpose language widely
used in academia that also has a complete formalisation, and has been mechanically proven
sound [27]. Type soundness has also been shown for large subsets of Java [25, 35, 55], and
OCaml [39]. There has also been substantial work on formalising Scheme [31], C [37],
and C++ templates [56].

There are a few academic formalisations trying to capture the core of Java. The most
popular of these is Featherweight Java (FJ) [23]. As part of this thesis, we develop our own
simplified model of Java, Lightweight Java (LJ), and briefly compare it to FJ (Chapter 3).

During the course of this research, LJ has already been used by others to develop
Lightweight Feature Java (LFJ) [14]. Type-soundness of LFJ was proven by mechanically
showing that any well-formed LFJ program can be translated to a well-formed LJ program.

42 RELATED WORK

2.2 Module systems

A lot of research has been done in this field, and there are many existing module systems,
both commercial and academic. For this reason, we chose to overview only a few mod-
ule systems that are most related to the topic of this thesis, and that together cover a wide
variety of technologies. Furthermore, our analyses focus mainly on the most relevant prop-
erties/features (§1.2). We start with a short overview of JMS, continue with the analyses,
and conclude with a table showing what module system has which property/feature.

2.2.1 A short overview of JMS

The Java Module System (JMS) is a prototype module system that is planned to be in-
tegrated into Java 7. In JMS, developers write module files, which are then compiled
together with the appropriate classes into module definitions. The administrator installs
these module definitions into repositories — the relation among the repositories determ-
ines what a given module definition can import. The initialisation of an installed module
definition creates its module instance, obtains the module instances of its imports, and
links them together. At this point, the Java code within a module instance is executable.
Note that once a module instance has been linked to its imports, the links cannot be modi-
fied, i.e. initialisation sets up fixed classloaders that perform deterministic name resolution
during execution. The underlying Java code is not “aware” of the module system.

JMS supports selective exporting, optional re-exporting, and its module visibility is
transitive (see §1.1.5). It features versions, allows modules to be defined in multiple files
(class and module file), and enables sharing of static data among multiple programs —
as described in Chapter 5, static data sharing among programs is enforced. However,
JMS does not support any form of renaming, module instantiation policies, sub-modules,
functors, or module-prefixed type references (due to backward-compatibility). Chapter 4
contains a more involved overview of the system.

2.2.2 OSGi

OSGi [38] is currently the most widespread module framework for Java, and the largest
competitor to JMS. Its bundles (module definitions) are, in fact, JAR (Java archive) files.

Bundles specify individual classes or packages as members, packages or bundles as
imports, and packages as exports. The import package directive, OSGi’s preferred way to
import, specifies what package the client wants, not who has the package he wants.

OSGi promotes service-oriented programming, i.e. the “publish-find-bind” model for
services, which are provided by the bundles registered within the global registry. A bundle
is registered together with a key-value map that stores custom properties; this map can be
used by custom constraints when looking up ‘a service.’

MODULE SYSTEMS 43

Furthermore, event-based handling is used for bundles and services — each bundle
is responsible for its own publication, discovery, binding, and adapting to changes in
runtime. For example, if a service stops while another service is using it, the latter service
breaks if its event handler does not explicitly re-bind to another suitable service.

As an example, we define a simple spellchecker as an OSGi service — this is an
adapted version of the example by Richard Hall [21]. First, we define the interface:

1 package spellchecker.service;

2 public interface SpellcheckerService {

3 public boolean checkWord(String word);

4 }

We compile it, and put it in a JAR file, spellchecker.jar, together with a manifest:

1 Manifest-Version: 1.0

2 Bundle-ManifestVersion: 2

3 Bundle-Version: 1.0.0

4 Bundle-SymbolicName: spellchecker

5 Import-Package: org.osgi.framework

6 Export-Package: spellchecker.service

Next, consider implementing an English variant of the service. We also specify the code
executed at start and stop points of this bundle by implementing BundleActivator.

1 package spellchecker;

2 import java.util.*;

3 import org.osgi.framework.*;

4 import spellchecker.service.SpellcheckerService;

5
6 public class Activator implements BundleActivator {

7 public void start(BundleContext context) {

8 Properties props = new Properties();

9 props.put("Language", "English");

10 context.registerService(SpellcheckerService.class.getName(),

11 new SpellcheckerImpl(), props);

12 }

13 public void stop(BundleContext context) {}

14 private static class SpellcheckerImpl

15 implements SpellcheckerService {

16 List<String> dictionary =

17 Arrays.asList(new String[] {"hello", "goodbye"});

18 public boolean checkWord(String word) {

19 return dictionary.contains(word.toLowerCase());

20 }

21 }

22 }

44 RELATED WORK

Again, we compile the code, and put it in a JAR file, spell en.jar, along with a
manifest file (the first three lines are the same as above):

4 Bundle-SymbolicName: spell_en

5 Bundle-Activator: spellchecker.Activator

6 Import-Package: org.osgi.framework, spellchecker.service

By making small changes to the English service, we also create a French service, and
store it within a different JAR file, spell fr.jar.

Finally, we create a client to these services:

4 package client;

5 import java.io.*;

6 import org.osgi.framework.*;

7 import spellchecker.service.SpellcheckerService;

8
9 public class Activator implements BundleActivator {

10 public void start(BundleContext context)throws Exception {

11 ServiceReference[] refs = context

12 .getServiceReferences(SpellcheckerService.class.getName(),

13 "(Language=*)");

14 if (refs != null)

15 try {

16 BufferedReader in =

17 new BufferedReader(new InputStreamReader(System.in));

18 while (true) {

19 System.out.print("Enter word: ");

20 String word = in.readLine();

21 if (word.length() == 0) break;

22 SpellcheckerService spell =

23 (SpellcheckerService) context.getService(refs[0]);

24 if (spell.checkWord(word))

25 System.out.println("Correct.");

26 else

27 System.out.println("Incorrect.");

28 context.ungetService(refs[0]);

29 }

30 } catch (IOException ex) { }

31 else

32 System.out.println("Couldn’t find a spellchecker service.");

33 }

34 public void stop(BundleContext context) {}

35 }

MODULE SYSTEMS 45

We then store this client in another JAR file, client.jar, together with a manifest
file similar to that of the service.

At this point, we can install, start, stop, and uninstall the bundles:

1 $ java -jar osgi.jar -console

2 osgi> install file:/programs/osgi/spellchecker.jar

3 Bundle id is 1

4 osgi> install file:/programs/osgi/spell_en.jar

5 Bundle id is 2

6 osgi> install file:/programs/osgi/spell_fr.jar

7 Bundle id is 3

8 osgi> install file:/programs/osgi/client.jar

9 Bundle id is 4

10 osgi> start 1 2 3 4

11 Enter word: hello

12 Correct.

13 Enter word: bonjour

14 Incorrect.

15 Enter word:

16 osgi> stop 4 3 2 1

17 osgi> uninstall 1

18 osgi> start 3 2 4

19 Enter word: hello

20 Incorrect.

21 Enter word: bonjour

22 Correct.

23 Enter word:

24 osgi> close

25 $

First, we installed (lines 2–9) and started (line 10) all the bundles. When the client
bundle was started, it found the English spellchecker service (lines 11–15). Then, we
stopped all the bundles (line 16), and uninstalled the service specification bundle (line 17).
Finally, we re-started the spellchecker services in a different order (line 18), and now the
client found the French spellchecker (lines 19–23), instead.

There are two interesting points to note here. First, the order in which the bundles were
started determines the preference order for their services. Second, an uninstalled bundle
remains in the framework for any bundles already bound to it.

Next, we investigate OSGi’s name resolution algorithm. Consider three bundles: a, b,
and c. All three bundles include a class p.T (located in package p), which holds a static
integer n with the initial value of zero. Whenever a, b, or c is started, the value of p.T.n
is increased by 1, 10, and 100, respectively, before being printed out.

46 RELATED WORK

If a and b export package p, while c imports p, we get the following interaction:

1 osgi> install file:/programs/osgi/a.jar

2 Bundle id is 1

3 osgi> install file:/programs/osgi/b.jar

4 Bundle id is 2

5 osgi> install file:/programs/osgi/c.jar

6 Bundle id is 3

7 osgi> start 1 2 3

8 bundle a: p.T.n=1

9 bundle b: p.T.n=10

10 bundle c: p.T.n=101

11 osgi> uninstall 3 2 1

12 osgi> install file:/programs/osgi/b.jar

13 Bundle id is 4

14 osgi> install file:/programs/osgi/a.jar

15 Bundle id is 5

16 osgi> install file:/programs/osgi/c.jar

17 Bundle id is 6

18 osgi> start 5 4 6

19 bundle a: p.T.n=1

20 bundle b: p.T.n=10

21 bundle c: p.T.n=110

From lines 8–9 above, we see that bundles a and b refer to different instances of
package p (otherwise, the lines 9 and 20 would read 11). From line 10, we observe that
bundle a shares its instance of p with bundle c. If we re-install the bundles in a different
order (lines 11–17), but start them in the same order as before (line 18), bundle b now
shares its instance of p (line 21) with c, instead.

To better understand the underlying semantics, we modify the above example a little.
Suppose that b now not only exports p, but also imports p. The above interaction produces
exactly the same output, except for lines 9 and 10, where the printed values of p.T.n are
11 and 111, respectively. In this case, the framework combined b’s import of p to the
a’s export of p. Interestingly, when the installation order is changed, the framework does
not create this link, giving the same output as above. From this, it appears that the bundle
installation order determines the primary exporters of packages. Therefore, if a bundle is
not the primary exporter for a package it contains, the bundle will share the package with
its primary exporter only if it also imports the package.

A bundle can also require another bundle (with the Require-Bundle directive in
a manifest file); however, importing a package is the OSGi’s preferred way of importing.
For example, if in the first scenario (a and b export p; c imports p) c also required b, then
c would still use a’s p when a is installed first. However, if both b and c require bundles
a and b, respectively, instead of importing package p, the final value printed for both

MODULE SYSTEMS 47

installation orders is 111. This implies that the Require-Bundle directive, contrary
to the Import-Package directive, is independent of the installation order.

To summarise, OSGi supports selective exporting, optional re-exporting (only possible
when using Require-Module), but its module visibility is transitive. Furthermore, the
framework supports the Import-Package directive, which is included mainly to re-
lieve bundle developers from worrying about what bundles to import; JMS left out this
directive, probably because (1) it is not clear how to obtain deterministic and intuitive se-
mantics when ambiguities arise, and (2) clients become highly dependent on their imports
to export whole packages. Like JMS, OSGi uses the parent-then-self name resolution
scheme, and does not support module instantiation policies, renaming, or functors.

2.2.3 .NET

A .NET assembly [15] is an encapsulation of a collection of language definitions com-
piled down to .NET bytecode (Common Intermediate Language, CIL), stored either as an
executable (.exe), or as a DLL library (.dll). An assembly can import other assemblies,
and implicitly export types (by declaring them public). .NET also has namespaces, which
are used to provide some name structuring and prevent name clashes.

An assembly can be composed from multiple code modules. These code modules are
not semantic barriers; however, they do provide a way to write an assembly in multiple
user languages, optimise downloading of an application by putting seldom-used types in a
code module that is downloaded on-demand, and can easily combine code from multiple
developers without creating multiple assemblies.

Assembly repositories are file-system-based. The .NET runtime searches for the im-
ported assemblies first within the application’s directory, and then within the system-wide
repository, Global Assembly Cache. To avoid name conflicts of same-named assemblies
that have different properties, e.g. version, the Global Assembly Cache is a single .NET
folder implemented using nested file-system directories.

For example, we can write some source code into a file, Hi.cs.

1 namespace HelloNamespace {

2 public class HelloClass {

3 public string hi() {return "hello, world";}

4 }

5 }

48 RELATED WORK

In a second file, Client.cs, we refer to the first.

1 using HelloNamespace;

2 class MyClient {

3 public static void Main() {

4 HelloClass myHelloClass = new HelloClass();

5 System.Console.WriteLine(myHelloClass.hi());

6 }

7 }

Now, we can either (a) compile them both directly into an executable, hello.exe:

$ csc /out:hello.exe Client.cs Hi.cs

Or, we can (b) create code modules, and link them into an executable:

$ csc /t:module Hi.cs

$ csc /addmodule:Hi.netmodule /t:module Client.cs

$ al /main:MyClient.Main /t:exe /out:hello.exe \

Hi.netmodule Client.netmodule

Finally, we can (c) create a DLL library, and an executable that refers to it:

$ csc /t:library /out:Hi.dll Hi.cs

$ csc /r:Hi.dll /t:exe /out:hello.exe Client.cs

Option (a) is quick and simple, but requires re-compilation of all source files; op-
tion (b) shows that incremental compilation of an assembly is possible through code mod-
ules; and, option (c) compiles against a DLL library that must later be found in the applic-
ation’s directory. A DLL library needs to be signed with a developer-generated key before
it can be installed into the Global Assembly Cache.

Suppose Client.cs was linked also with a copy of Hi.dll, HiCopy.dll. Then,
the reference to HelloClass within Client.cs would be ambiguous. To disambig-
uate the reference to the class within Hi.dll without modifying the imports, we can
create an external alias. First, we replace line 1 in Client.cs with:

1 extern alias Hello;

2 using HelloClass = Hello::HelloNamespace.HelloClass;

Then, we provide the compiler with the appropriate binding (/r:Hello=Hi.dll):

$ csc /t:library /out:Hi.dll Hi.cs

$ csc /t:library /out:HiCopy.dll Hi.cs

$ csc /r:Hello=Hi.dll /r:HiCopy /t:exe /out:hello.exe Client.cs

To summarise, .NET assemblies provide selective exporting (only public classes are
visible to client assemblies), but do not allow optional re-exporting, or renaming (only
class and namespace aliasing), and its assembly visibility is transitive. The bytecode can

MODULE SYSTEMS 49

contain only explicit type references:1 if there are multiple ways of resolving a class refer-
ence, an error is thrown at compile-time — such an ambiguity can always be resolved with
external aliases described above. The fact that all references must be resolved at compile-
time implies that JMS name resolution problems (§5.1) do not apply to .NET; however,
this also makes an assembly less versatile than a JMS module definition, since an as-
sembly can be linked only to the assemblies (that have the same key signature as those) it
was compiled against. Finally, there is no support for module instantiation policy: each
assembly always creates an instance of every assembly it is linked against, while assembly
sharing between multiple applications is not supported.

2.2.4 OCaml

Although functional languages are substantially different to object-oriented languages, we
feel that comparing JMS to a functional language module system is essential. We chose to
compare against OCaml [24]’s module system, since OCaml is currently one of the most
popular functional programming languages.

The following example source files demonstrate how OCaml deals with information
hiding, renaming, and name resolution. First, we define a string variable, msg, in a sub-
module, M, and a function, hello, that prints the value of msg. We define both of these
in a source file, A.ml, that implicitly defines an OCaml module, A.

module M = struct let msg = "hello, world" end

let hello () = print_endline M.msg

To define what A does not export, we write its interface in a separate file, A.mli. The
file below implies that A does not export its sub-module M.

var hello : unit -> unit

Another module, B (defined in B.ml), accesses A’s exported function hello with
a module-prefixed name reference. Note that trying to access A’s sub-module M gives a
compile-time error, and that A’s hello is, in fact, re-exported as hi.

(* module N = A.M *) (* Compile-time error: A.M hidden *)

let hi = A.hello

The following module, C, re-exports all names exported by B using the OCaml’s
include directive.

include B

The last module, D, first declares a variable, hi, with value 42, then puts C’s exported
names in the current namespace with OCaml’s open directive, and finally uses A’s hello

1There exists a proposal that lifts this restriction [11].

50 RELATED WORK

through the above re-exporting. Note that (1) module renaming is supported, (2) a name
binding overrides previous bindings to that name, (3) names are not automatically re-
exported, and (4) we can always use A’s hello directly; however, non-transitive module
visibility for top-level modules, e.g. A, can be achieved through include statements,
e.g. by including A in another module as a sub-module and restricting its visibility.

let hi = 42

module M = C

open M

let _ = hi ()

(* Error: A, B, and C do not automatically re-export hello. *)

(* let _ = hello () *)

The following commands compile and run the above modules.

$ ocamlc -o hello A.mli A.ml B.ml C.ml D.ml

$./hello

hello, world

To summarise, OCaml features selective exporting, optional re-exporting, renaming
of exports by exporters (through aliases and interfaces), renaming of exports by importers
(through aliases), module renaming, non-transitive module visibility, and module-prefixed
type references, while a name always resolves to the last corresponding binding. The
concept of module instantiation and module instances is not a natural concept for func-
tional programming languages, since these languages tend to avoid state; for this reason,
OCaml does not support module instantiation policies.

2.2.5 Jiazzi

Jiazzi [32] is an experimental component framework for Java. It is based on units [18], a
module system originally designed for Scheme [31]. It does not modify the syntax of the
underlying Java, and does, therefore, not support module-prefixed type references.

There are two types of units: atoms and compounds. The specification of a unit defines
(in a text file) which Java packages are imported, and which exported. Every imported or
exported package must have a package signature ascribed to it. A package signature is a
developer-written text file describing a sub-set of the public definitions of a Java package.

For example, suppose we define classes C and D in package p for an atom unit a.

package p;

public class C {

public void hello() {

System.out.println("a.p.C: " + new D().getMsg());

}

}

MODULE SYSTEMS 51

package p;

public class D {

public String getMsg() {return "(msg from atom-private a.p.D)";}

}

Furthermore, suppose we now define a package signature, p s, for p, which only
exports class C’s constructor and hello method:

signature p_s = {class C extends Object {C(); void hello();}}

Finally, we state in unit a’s definition file that a exports p s’s of the Java package p:

atom a {export p : p_s;}

We have to perform three steps to compile a unit in Jiazzi. First, we generate stub
files based on the signatures of the imported packages — this step is unnecessary for a,
since it does not import any packages. Second, we compile the Java source files that a unit
contains against the generated stub files; Jiazzi requires that we put all files for a unit in its
own sub-directory. Third, we perform the linking step, which essentially puts all member
class files and any inner units into a JAR file (for a unit a, the file is named a.jar).

$ java -jar jiazzi.jar . -stub a

$ javac -sourcepath a -d a -cp a/stubs.jar a/p/C.java

$ javac -sourcepath a -d a -cp a/stubs.jar a/p/D.java

$ java -jar jiazzi.jar . -link a

Next, we create a unit, b, which is identical to unit a, except that the strings in classes
C and D are “b.p.C ” and “b.p.D” instead of “a.p.C ” and “a.p.D”, respectively.

Now, we create a unit, c, that imports and uses a’s exports. It contains a single class,
r.Main, that creates an instance of p.C, and calls its hello method:

package r;

public class Main {

public static void main(String[] args) {new p.C().hello();}

}

The signature of the package r simply makes the Main.main method visible:

signature r_s = {class Main extends Object {

public static void main(String[]); }

}

The unit file for the atom c specifies that c imports the Java package p (ascribed with
p s), and exports the Java package r (ascribed with r s):

atom c {import p : p_s; export r : r_s;}

We obtain c.jar with the above procedure: generate stubs, compile classes, and link.

52 RELATED WORK

Now, we define a compound unit, d, that composes the atom units a and c:

1 compound d {

2 export r : r_s;

3 } {

4 link unit a : a, c : c;

5 link package a@p to c@p, c@r to r;

6 }

Line 2 above states that d, like c, exports the package r (ascribed with r s). Line 4
specifies that this compound unit contains units named a and b of same-named unit types
(defined above). Finally, line 5 links a’s export of p to c’s import of p, and c’s export of
r to this compound’s export of r.

Since the compound unit d does not contain any classes, and does not import any pack-
ages, we can skip stub generation and source compilation steps. Assuming the package
signatures, the unit files, and the previously-generated JAR files are in the same directory,
we can perform the linking step, then execute the main method of the r.Main class
(available through d’s export of r).

$ java -jar jiazzi.jar . -link d

$ java -cp d.jar r.Main

a.p.C: (msg from atom-private a.p.D)

Replacing all references to a in d with references to b gives the following output:

$ java -jar jiazzi.jar . -link d

$ java -cp d.jar r.Main

b.p.C: (msg from atom-private b.p.D)

The above example show that, once the framework has been set up, it is relatively easy
to link packages, atoms, and other compounds as desired.

Note that any reference to the class p.D from c’s code results in a compilation error:
p’s package signature p s does not include D, therefore no stub file for that class was
generated. If c also contained a class p.C, it would be ignored, since all references to
package p are re-directed to atom a. Therefore, since package bindings must be specified
explicitly, the name resolution always has a single possible target definition.

Our last example defines a component, e, that encapsulates the component d:

compound e {

export r : r_s;

} {

link unit d : d;

link package d@r to r;

}

MODULE SYSTEMS 53

This example show that re-exporting is possible. However, to successfully link e, we
not only require the definition of d, but also the definitions of a (or b) and c. This implies
that the module visibility relation is transitive.

To summarise, Jiazzi supports selective exporting of classes through its package sig-
natures, optional re-exporting of packages through its units, and sub-modules, since com-
pound units can encapsulate atoms and other compounds. However, its module visibility
is transitive, there are no unit instantiation policies (at runtime, units are never shared),
and there is no support for renaming or versioning. Jiazzi is largely based on its pack-
age signatures, which can be parametrised to easily adapt to multiple Java packages (not
shown); there is also some support for package-level generics (not shown). When creating
a linking unit, i.e. a sub-module, within a compound, we can name it freely, and use that
name within the same unit file; however, the underlying Java code cannot refer to any unit,
only packages. There is also no support for unit-level generics.

2.2.6 General overview

The table in Fig. 2.1 (page 54) shows which of the analysed module systems has which
property or features — these properties and features correspond to a subset of those men-
tioned in Fig. 1.5 (page 32); the table also includes Java classes and Java packages for
comparison. As mentioned at the beginning of this section, we only focused on the prop-
erties and features most relevant to this thesis. A larger table that includes the module
systems developed in this thesis is shown in Chapter 9.

Apart from the examples shown above, we created a diamond import example for all
of the analysed module systems — the source code for these can be found online:

http://www.cl.cam.ac.uk/˜rs456/thesis/diamond.zip

For example, module D imports modules B and C, both of which import module A and
manipulate its static state. Within a single application, B and C share their instance of A in
all analysed module systems. OSGi also shares its instances across applications; however,
OSGi’s sharing can sometimes be, as the above examples show, unpredictable. As we
shall observe later (Chapter 5), OSGi and JMS has similar sharing principles.

Design space discussion

We have now shown what subset of a specific set of module-level features a few selected
module systems have. However, we have so far not explained why some features are
left unsupported. This subsection gives a broad discussion about the design space of the
selected module-level properties and features.

http://www.cl.cam.ac.uk/~rs456/thesis/diamond.zip

54 RELATED WORK

MODULE(-LIKE) FEATURE

JA
V

A
C

L
A

S
S

E
S

JA
V

A
PA

C
K

A
G

E
S

JM
S

M
O

D
U

L
E

S

O
S

G
I

B
U

N
D

L
E

S

.N
E

T
A

S
S

E
M

B
L

IE
S

O
C

A
M

L
M

O
D

U
L

E
S

JI
A

Z
Z

I
U

N
IT

S

P
R

O
P

E
R

T
Y

parametricity 3 7 7 7 7 3 3

module-prefixed type references 3 3 7 7 7 3 7

module instantiation policies 3 7 7 7 7 7 7

multiple files per module 7 3 3 3 3 3 3

non-transitive module visibility 7 7 7 7 7 3 7

optional re-exporting 7 7 3 3 7 3 3

renaming of exports by exporters 7 7 7 7 7 3 7

renaming of exports by importers 7 7 7 7 3 3 7

renaming of imports 7 7 7 7 3 3 7

runtime sharing among programs 7 7 3 3 7 7 7

selective exporting 3 3 3 3 3 3 3

sub-modules 3 7 7 7 7 3 3

sub-modules defined in own files 7 7 7 7 7 3 3

versioning 7 7 3 3 3 7 7

Figure 2.1: Overview of properties/features for a few related module systems

A module system often comes late into the design of a programming language; some-
times too late to easily add support for module-prefixed type references in a backward-
compatible way (e.g. JMS) — while increasing expressivity at the user level, they do not
seem to place constraints on other language features. In Chapter 8, we show how module-
prefixed type references can be used while localising the influence of a single module.

The possibility of runtime sharing of modules among programs allows a runtime
system to use a lower memory footprint when executing multiple programs that use the
same modules. The price of this feature is the added complexity that comes with the mod-
ule instance management system. While module versions are a useful, low-cost feature
for every module system, they are practically required for any module system with support
for runtime sharing in order to effectively select and store module definitions.

Module instantiation policies give developers the ability to control module instance
sharing and separation, and contribute both to localisation of a single module, and to ex-
pressivity in general; however, they can introduce some complexity for the module system.
This is discussed further in Chapter 5, where we show how we implement them for JMS.

The added benefit of module instantiation policies is that they allow for non-transitive

MODULE SYSTEMS 55

module visibility, a vital part for strong information hiding (Chapter 5) — this has been
achieved for iJAM (Chapter 6). The property can also be obtained through module inclu-
sion (OCaml; Thorn, Chapter 8).

Parametricity can be implemented for Java packages (e.g. Jiazzi), JMS module defin-
itions or OSGi bundles — Thorn (Chapter 8) defines similar module structures to JMS and
OSGi, and defines lightweight parametricity. Although it leads to greater reusability on
the source level (if configuration costs are not too high), sharing of parametric modules at
runtime is restricted to those with equivalent arguments, only. Furthermore, parametricity
can easily introduce a short circuit into the initialisation procedure; either the arguments
must be restricted to prevent this, or there must be support for developers to cope with
such initialisation exceptions.

A great feature for improving expressivity of module composition is optional re-
exporting, especially when sub-modules are involved (Chapter 8); however, it also in-
troduces the question of whether to explicitly bind all type references at compile time (for
execution speed purposes), or whether to resolve them dynamically (for greater versatility
of modules). Many forms of renaming (that improve robustness and, thus, scalability)
also share this dilemma.

In general, a module-level feature is often connected to or required by another. Each
feature has its implementation, module system complexity, and runtime cost. Whether to
include a certain feature heavily depends on the style and type of programs written in a
specific programming language. In Chapter 8, however, we show how a module system
can define all of the mentioned features, yet remain lightweight and non-intrusive.

3
Lightweight Java (LJ)

When designing or reasoning about a language feature or a language analysis, researchers
try to limit the underlying language to avoid dealing with unnecessary details. For ex-
ample, object-oriented generics were formalised on top of Featherweight Java (FJ) [23], a
substantially simplified model of the Java programming language [19].

Many researchers have used FJ as their base language. However, FJ is not always
suitable, since it is purely functional — it does not model state; there are only expres-
sions, which are evaluated completely locally. Therefore, FJ is a poor choice for language
analyses or language features that rely on state, e.g. separation logic [43] or mixins [9].

In this chapter, we present Lightweight Java (LJ) [49], a minimal imperative core of
Java. We chose a minimal set of features that still gives a Java-like feel to the language,
i.e. fields, methods, single inheritance, dynamic method dispatch, and method overriding.
We did not include type casts, local variables, field hiding, interfaces, method overloading,
or any of the more advanced language features mainly due to their apparent orthogonality
to the module system; however, we later realised that, by including type casts and static
data, we could formally verify properties regarding class cast exceptions (or their lack of)
and module state independence — this extension remains future work.

LJ’s semantics uses a program heap, and a variable state, but does not model a frame
stack — method calls are effectively flattened as they are executed, which simplifies the
semantics. In spite of this, LJ is a proper subset of Java, i.e. every LJ program is a valid
Java program, while its observable semantics exactly corresponds to Java’s semantics.

LJ is largely a simplification of Middleweight Java (MJ) [6]. In addition to the above,

58 LIGHTWEIGHT JAVA (LJ)

MJ models a stack, type casts, and supports expressions (not just statements).

LJ is defined rigorously. It is designed in Ott [46], a tool for writing definitions of
programming languages and calculi; all LATEX presenting the syntax, the semantic rules,
and various in-text language terms, is generated by Ott. From LJ’s Ott code, the tool also
generates the language definition in Isabelle/HOL [3], a tool for writing computer-verified
maths. Based on this definition, we mechanically prove type soundness in Isabelle/HOL,
which gives us high confidence in the correctness of the results.

Initially, we designed LJ as a base language for modelling the Java Module System
(Chapter 4), and its improvement (Chapter 6) — in both, we achieved a high level of reuse
in both the definitions and proof scripts. Through this process, LJ has been abstracted to
the point where we think it can be used for experimenting with other language features. In
fact, LJ has already been used by others to formalise “features” in LFJ [14].

The following sections show an example LJ program (§3.1), LJ’s syntax (§3.2), oper-
ational semantics (§3.3), type system (§3.4), type checking (§3.5), and a detailed proof of
type soundness (§3.6).

The full Ott definition, the complete Isabelle/HOL proof of type soundness, and vari-
ous other LJ documents can be found at the following address:

http://www.cl.cam.ac.uk/research/pls/javasem/lj/

3.1 Example program

Here are two Lightweight Java class definitions, which show the use of class fields, class
methods, class inheritance, method overriding, subtyping, and dynamic method dispatch.

class A { // class definition

A f; // class field

A m(B var) { this.f = var; return var; } // subtyping

}

class B extends A { // class inheritance

A m(B var) { this.f = var; return this; } // overriding

}

// A a, result; B b;

a = new B(); // subtyping

b = new B();

result = a.m(b); // dynamic method dispatch (calls B::m)

Due to method overriding, the method call on the last line calls B’s method m. There-
fore, when the execution stops, both result and a point to the same heap location.

http://www.cl.cam.ac.uk/research/pls/javasem/lj/

SYNTAX 59

3.2 Syntax

This section presents the user syntax, i.e. the abstract syntax of what the user writes. The
syntax is presented in the top-down, depth-first fashion. In our presentation, keywords are
bold, meta-variables are italic, and constants are in typewriter font. The over-bars
indicate lists, e.g. cld is a list of class definitions, and sk k stands for s1..sk..sn for some n.

Meta-variables dcl , f , meth and var range over Java identifiers. Meta-variable dcl is
used for derived class names (cannot be Object), f (of meta-type Field) for field names,
meth (of meta-type Method) for method names, and var (of meta-type Var) for parameter
names; j , k and l are used as index variables. The user syntax is shown in Fig. 3.1.

P ::= program (cld list)
| cld M def.

cld ::= class definition
| class dcl extends cl { fd meth def } def.

C , cl ::= class name
| Object top class
| fqn fully qualified name

fqn ::= fully-qualified name
| dcl def.

fd ::= field declaration
| cl f ; def.

meth def ::= method definition
| meth sig {meth body } def.

meth sig ::= method signature
| cl meth (vd) def.

vd ::= variable declaration
| cl var def.

meth body ::= method body
| s1 .. sk return y ; def.

s ::= statement
| { sk

k } block
| var = x ; variable assignment
| var = x . f ; field read
| x . f = y ; field write
| if (x == y) s else s ′ conditional branch
| var = newctxcl(); object creation
| var = x .meth (y) ; method call

TVar , x , y ::= term variable
| var normal variable
| this ref. to current object

Figure 3.1: LJ user syntax

60 LIGHTWEIGHT JAVA (LJ)

A class definition, cld , defines a class with a class name, dcl (a superclass name cl), a
list of field declarations, fd (pairs of cl and f), and a list of method definitions, meth def .
A method definition, meth def , is composed of a method signature, meth sig , and a
method body, meth body . The former is defined with a return class reference, cl , method’s
name, meth, and a list of parameter definitions, vd (pairs of cl and var), while the latter
is a list of statements, sk k, followed by a return statement, ‘return y ;’.

We use cl to refer to either Object, or a fully-qualified name fqn. Since LJ does
not define Java packages, fqn is defined simply as dcl (derived class); however, in our
two extensions of LJ (Chapter 4 and Chapter 6), fqn is a tuple of a package name and
dcl , since the two languages do define Java packages. Abstracting the concept of fully-
qualified names in this way allows a greater reuse of the language definitions and proofs.

The sub-language of statements, s , is simple, and Java-like. We avoid the complexity
of arithmetic normal forms and compound expressions, since they do not increase ex-
pressivity. For example, if we modelled compound expressions, we would also have to
formalise partially-evaluated expressions, evaluation order, and congruence rules, all of
which would make the operational semantics much less clear than it is now.

As in Java, the keyword this is used as a special variable that always points to the
object of which code is currently executing. To prevent the programmer from breaking
this invariant, assignment to this is not allowed, which we enforce syntactically. A term
variable x is either a variable, var , or this — x is used when either of the two can appear.

The ctx in ‘var = newctxcl();’ is actually not part of the user syntax. It is there to
support different forms of runtime loading of class definitions. In LJ, ctx is always empty,
since class loading in LJ is trivial; however, languages with more complex class loading
can use ctx as a compile-time (or load-time) annotation, which guides the class resolution
(classloaders) at runtime — examples of this are shown later in §4.3.1 and §6.2.1.

3.3 Operational semantics

We precisely define the execution of LJ programs with small-step operational semantics.
The judgement config −→ config ′ stands for “a configuration, config , reduces to another
configuration, config ′, in one step.” In the following subsections, we define configurations
(§3.3.1), show some lookup functions that operate on the program state (§3.3.2), and
describe the statement reduction rules (§3.3.3), which use the lookup functions.

3.3.1 Configuration (config)

A configuration, config , is a tuple consisting of a program, P , a variable state, L, a heap,
H , and a list of statements left to execute, s . A program, P , is a list of class definitions, cld;

OPERATIONAL SEMANTICS 61

a variable state, L, is a partial map from term variables, x (or y), to their values, v (meta-
type: TVar ⇀ Val); and a heap, H , is a partial map from object identifiers, oid (non-
null pointers), to class types, τ , and field-to-value maps, f -to-v (meta-type: Pointer ⇀

(Type× (Field ⇀ V al))). As explained in §3.4.1, a type, τ , is either Object or the name
of a derived class, dcl . Values are object identifiers, oid , or null. LJ only models one type
of exception: the null pointer exception, NPE. The inner syntax, i.e. the abstract syntax
used for representing a program’s state, of these concepts is shown in Fig. 3.2.

config ::= configuration
| (P , L, H , sk

k) normal configuration
| (P , L, H , Exception) exception occurred

L ::= variable state (x ⇀ v)
| [] M empty variable state
| L [x 7→ v] M L with x 7→v
| L [x1 7→ v1 .. xk 7→ vk] M L with many mappings

Val , v , w ::= value
| null null value
| oid object identifier

H ::= heap (oid ⇀ (τ × (f ⇀ v)))
| [] M empty heap
| H [oid 7→ (τ , f1 7→ v1 .. fk 7→ vk)] M H with new oid of type τ
| H [(oid , f) 7→ v] M H with (oid ,f)7→v

Exception ::= exception
| NPE null-pointer exception

Figure 3.2: Abstract syntax used for representing an LJ program’s state

The productions of L and H in Fig. 3.2 are meta productions, i.e. they describe the syntax
that represent functions, which change the inner state of the corresponding structures.

3.3.2 Lookup functions

This subsection shows the lookup functions (directly and indirectly) used within the state-
ment reduction rules. The definitions of these functions are fairly straightforward, which
is why we recommend a quick scan-through only, on a first reading; the only non-trivial
function here is the one for finding the class inheritance path (page 62). All the functions
are presented using the rules described in §1.6.

In our language definitions, the lookup functions hide the concrete types of the con-
figuration structures (Figure 3.2, page 61). In our extensions of LJ, the statement sub-
language remains unchanged, while the program structure becomes substantially more
complicated; however, by adapting only the corresponding lookup functions, we are able
to reuse the statement reduction rules in their entirety.

62 LIGHTWEIGHT JAVA (LJ)

Finding a class definition

To find a class definition within a specific program, P , we use a simple linear search
through the list of program’s class definitions. If an appropriate class definition is found,
the function below returns it along with the context in which it was found (in LJ, this is
simply the starting context).

find cld (P , ctx , fqn) : (P × ctx × fqn)→ (ctx , cld)opt =

match P with []→ None | (class dcl extends cl { fd meth def } :: cld)→
if dcl = fqn then Some (ctx , cld) else find cld (cld, ctx , fqn)

Finding a type

As mentioned later in §3.4.4, every class definition defines a type. This is why the function
that finds a type corresponding to a particular class reference relies on find cld: the type
is extracted from the context and the class definition found.

find type (P , ctx , cl) : (P × ctx × cl)→ τopt =

match cl with Object→ None | dcl → match find cld (P , ctx , cl) with

None → None | Some (ctx ′, cld)→ Some ctx ′.dcl

Finding an inheritance path

A class is fully defined by its inheritance path, i.e. the class and all of its ancestors (through
the superclass relation). Knowing the inheritance path for a particular class reference is
vital in many parts of the LJ semantics — here we describe how this is done.

We split the function into two sub-functions: find path rec and find path. The
former includes a recursive function call and implements most of the semantics, while the
latter provides a nice interface.

find path rec (P , ctx , cl , ctxcld) : (P × ctx × cl × ctxcld)→ ctxcldopt =

match cl with Object→ Some ctxcld | fqn →
if ¬ (acyclic cldsP) then None else match find cld (P , ctx , fqn) with

None → None | Some (ctx ′, cld)→
find path rec (P , ctx ′, superclass name (cld), ctxcld @ [(ctx ′, cld)])

Explanation. The function tries to find the inheritance path that corresponds to the given
class name, cl (in the given ctx and program P). The fourth parameter to the function,
ctxcld, is the function’s accumulator used to store intermediate results between function’s
recursive calls. If the definitions for all the classes in the inheritance path are found, the
function returns the path; otherwise, the function fails by returning None. The function
superclass name simply extracts the name of the superclass from the given class defin-
ition; ctxcld is a shorthand for ‘(ctx , cld)’ (for some fresh meta-variables ctx and cld);
acyclic clds is described below.

OPERATIONAL SEMANTICS 63

Proof of Termination. When defining Isabelle/HOL functions with non-primitive recur-
sion, one also has to prove their termination. Specifically, one has to provide a measure of
the arguments, which provably decreases with each recursive call [36, §3.5.2].

For the above function, this measure is: the length of the inheritance path from the
current argument class. This path length is defined as follows.

PL OBJ

(P , ctx , Object, 0) ∈ path length

PL FQN

find cld (P , ctx , fqn) = (ctx ′, cld)
superclass name (cld) = cl
(P , ctx ′, cl , nn) ∈ path length

(P , ctx , fqn, nn + 1) ∈ path length

Since path length is a relation, and not a function, we have to use the definite
descriptor [36, §5.10.1], ι, to obtain the length, nn, that corresponds to the class refer-
ence, cl (in ctx , P). The value that gets smaller with each recursive call is:

ι nn.(P , ctx , cl , nn) ∈ path length .

To ensure that there exists a finite nn for each recursive call, we place an acyclicity
constraint on the inheritance relation among the class definitions in the program. The
acyclic clds relation is defined as follows.

∀ctx fqn .

(
(∃ctx ′ cld .find cld (P , ctx , fqn) = (ctx ′, cld)) −→

∃nn . (P , ctx , fqn, nn) ∈ path length

)
acyclic cldsP

AC DEF

Explanation. If we can find a class definition for some ctx and fqn (in LJ, there is no class
definition for Object), then the corresponding inheritance path has a finite length.

Since Isabelle/HOL does not support dependent types, we simulate them by testing for
acyclicity at the beginning of the function — if a program does not satisfy the property,
the function fails. As shown later in §3.5, a well-formed program is acyclic by definition.

Given the acyclicity constraint, it is relatively easy to show that the path length

measure decreases with each recursive call.

find path (P , ctx , cl) : (P × ctx × cl)→ ctxcldopt =
find path rec (P , ctx , cl , [])

Explanation. This function is a friendly interface to find path rec: it starts the search
with an empty accumulator.

Looking up the inheritance path for a type

Often, we already hold a type, and want to find the corresponding inheritance path. This
function does just that. It uses the find path function.

find path (P , τ) : (P × τ)→ ctxcldopt =

match ty with Object→ Some [] | ctx.dcl → find path (P , ctx , dcl)

64 LIGHTWEIGHT JAVA (LJ)

Getting field names of a class

Knowing all field names for a class is required when creating a field-value map for the
newly created objects. We obtain the field names through the inheritance path, and scan
through each class definition for field definitions. The function class fields simply ex-
tracts the field definitions from the given class definition.

fields (P , τ) : (P × τ)→ f opt =

match find path (P , τ) with

None → None | Some ctxcld→ Some (fields in path (ctxcld))

fields in path (ctxcld) : ctxcld→ f =

match ctxcld with []→ [] | (ctx , cld) :: ctxcld
′ →

(map (λ(cl f ;)→ f) (class fields (cld))) @ fields in path (ctxcld
′
)

Finding method definitions

Method definition lookups appear both in the well-formedness rules, and in the reduction
rules. To look up a method definition for some type, τ , we first find the type’s inheritance
path, and then perform a linear search through it.

find meth def (P , τ,meth) : (P × τ ×meth)→ (ctx ×meth def)opt =

match find path (P , τ) with None → None | Some ctxcld→
Some (find meth def in path (ctxcld,meth))

In the second step, method definitions of each class in the inheritance path are searched
for a method with the given name. Since the subclasses are searched first, the function
respects method overriding.

find meth def in path (ctxcld,meth) : (ctxcld×meth)→ (ctx ×meth def)opt =

match ctxcld with []→ None | ((ctx , cld) :: ctxcld
′
)→

match find meth def in list (class methods (cld),meth) with

Some meth def → Some (ctx ,meth def)
| None → find meth def in path (ctxcld

′
,meth)

When searching through method definitions of a particular class, the first method defin-
ition with a matching name is returned — as shown later in §3.5.2 (page 74), method names
within a class must be distinct, which implies that ‘if there is a method with a matching
name, it is the only such method within the method definitions of a class.’

find meth def in list (meth def ,meth) : (meth def ×meth)→ meth def opt =

match meth def with []→ [] | (cl meth ′ (vd) {meth body } @ meth def
′
)→

ifmeth = meth ′ then cl meth ′ (vd) {meth body }
elsefind meth def in list (meth def

′
,meth)

OPERATIONAL SEMANTICS 65

(P , L, H , { sk
k } s ′l

l
) −→ (P , L, H , sk

k s ′l
l
)

R BLOCK

1.L (x) = v

(P , L, H , var = x ; sl
l) −→ (P , L [var 7→ v], H , sl

l)
R VAR ASSIGN

1.L (x) = null

(P , L, H , var = x . f ; sl
l) −→ (P , L, H , NPE)

R FIELD READ NPE

1.L (x) = oid 2.H (oid , f) = v

(P , L, H , var = x . f ; sl
l) −→ (P , L [var 7→ v], H , sl

l)
R FIELD READ

1.L (x) = null

(P , L, H , x . f = y ; sl
l) −→ (P , L, H , NPE)

R FIELD WRITE NPE

1.L (x) = oid 2.L (y) = v

(P , L, H , x . f = y ; sl
l) −→ (P , L, H [(oid , f) 7→ v], sl

l)
R FIELD WRITE

1.L (x) = v 2.L (y) = w 3. v = w

(P , L, H , if (x == y) s1 else s2 s ′l
l
) −→ (P , L, H , s1 s ′l

l
)

R IF TRUE

1.L (x) = v 2.L (y) = w 3. v 6= w

(P , L, H , if (x == y) s1 else s2 s ′l
l
) −→ (P , L, H , s2 s ′l

l
)

R IF FALSE

1.find type (P , ctx , cl) = τ 2.fields (P , τ) = fk
k

3. oid /∈ dom (H) 4.H ′ = H [oid 7→ (τ , fk 7→ null
k
)]

(P , L, H , var = newctxcl(); sl
l) −→ (P , L [var 7→ oid], H ′, sl

l)
R NEW

1.L (x) = null

(P , L, H , var = x .meth (yk
k) ; sl

l) −→ (P , L, H , NPE)
R MCALL NPE

R MCALL

1.L (x) = oid 2.H (oid) = τ

3.find meth def (P , τ , meth) = (ctx , cl meth (clk vark
k
) { s ′j

j
return y ; })

4. var ′k
k ⊥dom (L) 5.distinct (var ′k

k
) 6. x ′ /∈ dom (L)

7. x ′ /∈ var ′k
k

8.L (yk) = vk

k

9.L′ = L [var ′k 7→ vk
k
] [x ′ 7→ oid]

10. θ = [vark 7→ var ′k
k
] [this 7→ x ′] 11. θ ` s ′j s ′′j

j

12. θ (y) = y ′

(P , L, H , var = x .meth (yk
k) ; sl

l) −→ (P , L′, H , s ′′j
j

var = y ′ ; sl
l)

Figure 3.3: LJ’s small-step operational semantics for statements

66 LIGHTWEIGHT JAVA (LJ)

3.3.3 Statement reduction (config −→ config ′)

The small-step operational semantics of LJ is shown in Fig. 3.3. Except for the object cre-
ation statement, ‘var = newctxcl();’, reduction rule R NEW, and the method call state-
ment, ‘var = x .meth (yk

k) ;’, reduction rule R MCALL, the rules are straightforward.

As in Java, de-referencing an invalid pointer throws a null-pointer exception, NPE.
This can happen when reading a field (if x in ‘var = x . f ;’ is null), when writing to a field
(if x in ‘x . f = y ;’ is null), or when calling a method (if x in ‘var = x .meth (yk

k) ;’
is null). Since LJ has no exception handling mechanism, these exceptions terminate the
program, resulting in the second form of the configuration (as shown in Fig. 3.2). All such
exceptions can be avoided by checking the term variable in question: since LJ has only
the most basic syntax, where variables cannot be compared directly to values, one has to
assign null to a term variable, then check the equality between the variable and the term
variable in question in an if statement before executing any of the above statements.

The object creation statement creates an entry in the heap, which includes a map that
holds values for all fields of the new object. The first two steps of the R NEW rule resolve
(with find type, in context ctx) the class reference, cl , to a type, τ , and locate (with
fields) the type’s fields. These two steps must have already succeeded during the type-
checking phase (shown later in §3.5.2, page 76), which is why we know that they will
not fail during execution. Alternatively, we could have stored the fields found during the
type-checking phase within the compiled version of the object creation statement.

Method calls are effectively flattened, since LJ does not model a frame stack. When
a method is called on an object, the definition of that method is looked up within the
class definitions that define the object. The body of the method is then inserted into the
list of statements to be executed. To make sure that variable binding within the method
is logically preserved, parameter names are replaced with fresh variables. Benefits and
drawbacks of not having a stack are discussed in the conclusion of this chapter (§3.7).

For example, suppose we execute a statement ‘x=x.m(x,y);’, which calls the method
‘void m(A y, A x){x=x.f; return y;}’. Before we can execute the method’s body,
we need to assign values to parameter names, x and y. Without fresh names, we would be
assigning the values of x and y to the names y and x in the global context, respectively —
that is, the values of x and y would be incorrectly swapped even after the method call. An-
other bad approach would be to translate the method body using the parameter-argument
name mapping, e.g. the above method call would be flattened into ‘y=y.f; x=x;’ — this
is incorrect, since the change to y should remain local to the method call. In other words,
our evaluation strategy is call-by-value (as in Java), not call-by-name. For this reason, we
create fresh parameter variables, bind them to argument values, and execute the method’s
body, where the original parameter names are replaced with their fresh counterparts.

We explain R MCALL’s premises here one-by-one: (1) obtain value (pointer oid) of x

TYPE SYSTEM 67

in L; (2) obtain the type, τ , for oid through the heap, H ; (3) find the method definition in
τ with name meth; (4) obtain fresh names, var ′k

k
, for method’s parameters, vark

k (here,
⊥ is defined as an infix proposition, which holds when the two argument sets are disjoint);
(5) make sure var ′k

k
are distinct from each other; (6) obtain a fresh name, x ′; (7) make

sure x ′ is also distinct from any variable in var ′k
k
; (8) look up values, vk

k, of method
arguments, yk

k , in L; (9) extend the variable state, L, to L′ by element-wise mapping
var ′k

k
to vk

k, and x ′ to oid ; (10) create a variable-to-variable mapping, θ, which element-
wise maps the method’s original parameters, vark

k , to the fresh variables, var ′k
k
, and this

to x ′; (11) translate the variables in the statements of the method, s ′j
j
, to s ′′j

j
using θ; and

(12) translate the method’s return variable, y , to y ′ using θ. The method call statement,
‘var = x .meth (yk

k) ;’, is then replaced with the translated statements, s ′′j
j
, and with the

original var assigned to the translated returned variable, y ′, obtaining ‘s ′′j
j

var = y ′ ;’.1

3.3.4 Variable translation (θ ` s s ′)

As described above, the formalisation of a method call statement reduction requires fresh
variables and variable translation: each time a method is called, a fresh set of variables is
created (in the variable state L) that corresponds to the parameters of a method called; be-
fore the statements of a method are executed, the variables in those statements are renamed
to the corresponding fresh variables.

In particular, variable translation is performed in step (11) of R MCALL (Fig. 3.3,
page 65). The structure used to perform this translation is a variable-to-variable map,
θ: x ⇀ x . The straightforward variable translation rules are shown in Fig. 3.4.

3.4 Type system

An LJ program, which was not checked before execution, could contain errors that would
stop the execution, e.g. trying to call an undefined method on an object. Such program
errors, known as type errors, are not defined in our semantics, since they are prevented by
the type-checking phase, which occurs before execution.

Type-checking is based on the type system of a language, which defines what types
are, and how they are related. This section presents LJ’s type system.

3.4.1 Type (τ)

Object is the supertype of all types, i.e. a value of any type can be used where an Object

is expected.2 Each class definition, cld , defines a type. Therefore, a type, τ , is either

1There is no ‘;’ between s ′′j
j

and ‘var = y ′ ;’, since a non-empty s ′′j
j

already ends with ‘;’ or ‘}’.
2One can also instantiate the Object type; however, the resulting object contains no state or functionality.

68 LIGHTWEIGHT JAVA (LJ)

TR S BLOCK

1. θ ` sk s ′k
k

θ ` { sk
k } { s ′k

k }

TR S VAR ASSIGN

1. θ (var) = var ′

2. θ (x) = x ′

θ ` var = x ; var ′ = x ′ ;
TR S FIELD READ

1. θ (var) = var ′

2. θ (x) = x ′

θ ` var = x . f ; var ′ = x ′ . f ;

TR S FIELD WRITE

1. θ (x) = x ′ 2. θ (y) = y ′

θ ` x . f = y ; x ′ . f = y ′ ;

TR S IF

1. θ (x) = x ′ 2. θ (y) = y ′

3. θ ` s1 s ′1 4. θ ` s2 s ′2
θ ` if (x == y) s1 else s2 if (x ′== y ′) s ′1 else s ′2

TR S NEW

1. θ (var) = var ′

θ ` var = newctxcl(); var ′ = newctxcl();
TR S MCALL

1. θ (var) = var ′ 2. θ (x) = x ′

3. θ (yk) = y ′k
k

θ ` var = x .meth (yk
k) ; var ′ = x ′ .meth (y ′k

k
) ;

Figure 3.4: LJ’s variable translation within method calls

Object, or the name of a defined class, dcl .
The latter is prefixed with ctx so that type identifiers uniquely identify a class definition

also in language extensions where ctx is non-empty.

Type, τ ::= type
| Object supertype of all types
| ctx.dcl class identifier

3.4.2 Type environment (Γ)

A method parameter is declared using two names: a variable, var , and a class name, cl .
The variable is the parameter’s name, while the class name stands for the parameter’s type.

When type-checking the body of a method, we use a type environment, Γ, which stores
the types of variables in scope. The type environment is, therefore, a partial map from term
variables, x (either var or this), to types: TVar ⇀ Type .

Γ ::= type environment (x ⇀ τ)
| [x1 7→ τ1 .. xk 7→ τk] M type mappings
| Γ [x 7→ τ] M Γ with x 7→τ

TYPE SYSTEM 69

3.4.3 Subtyping (P ` τ≺ τ ′)

The subtyping relation states when a value of a type can be used when a value of another
type, supertype, is expected. Our subtyping relation is both reflexive and transitive.

Most languages define the subtyping relation as a transitive closure of class extension.
An example of this is FJ [23]. LJ’s subtyping is defined in a non-standard way: a type, τ ,
is a subtype of τ ′ iff a class definition corresponding to τ is in the inheritance path of τ ′.

STY OBJ

1.find path (P , τ) = ctxcld

P ` τ≺ Object

STY DCL

1.find path (P , τ) = (ctxk , cldk)
k

2. class name (cldk) = dclk
k

3. (ctx ′, dcl ′) ∈ (ctxk, dclk)
k

P ` τ≺ ctx ′.dcl ′

The find path function (page 63) finds the inheritance path, ctxcld, for a type, τ ,
while class name extracts the class name, cl , from a class definition, cld .

We derive type reflexivity and transitivity properties from the relation. This definition
makes it relatively easy to prove many of our lemmas in Isabelle/HOL, since quite a few
of them are based on functions that are defined in terms of find path, too. An example
of such a lemma is method type preservation (shown later in §3.5.1, page 73).

3.4.4 Valid type (P ` τ)

Although every class definition defines a type, a class definition can have an invalid refer-
ence to its superclass. Since the class inheritance relation and the subtyping relation rely
on validity of these references, class definitions should not contain such errors.

We define the concept of a valid type here in order to simplify the discussion of type
reflexivity and transitivity: a type, τ , is valid in a program, P , iff there is an inheritance
path in P that corresponds to τ :

P ` τ
def
= ∃ctxcld. find path (P , τ) = ctxcld

We can now show that if τ is a subtype of τ ′ in P , then both τ and τ ′ are valid types.

Lemma 1 (Subtype is a valid type). P ` τ≺ τ ′ =⇒ P ` τ

Proof. Trivially follows from the definition of a valid type (above) and the subtype relation
(§3.4.3).

Showing that the supertype is also a valid type is more difficult. We can prove it with the
help of the following lemma (this lemma is used throughout our proof scripts):

70 LIGHTWEIGHT JAVA (LJ)

Lemma 2 (Inheritance sub-path).

find path (P , ctx , cl) = ctxcld ∧ (ctx ′, cld ′) ∈ ctxcld ∧
class name (cld ′) = dcl ′ ∧ find path (P , ctx ′, dcl ′) = ctxcld

′

=⇒ ∃ctxcld′′. ctxcld = ctxcld
′′

@ ctxcld
′

Explanation. If we look up (in context ctx and program P) an inheritance path, ctxcld,
for a class reference, cl , and then look up the inheritance path, ctxcld

′
, for a class, cld ′,

and context ctx ′ in ctxcld, then ctxcld
′
is a suffix of ctxcld.

Proof. By first proving a generalised version of the lemma, which also unfolds find path

(page 63) to express the desired property with find path rec (page 62) instead:

find path rec (P , ctx , cl , ctxcld
′
1) = Some ctxcld1 =⇒

(∀(ctx ′, cld) ∈ ctxcld1. (ctx ′, cld) ∈ ctxcld′1 ∨
(∀ctxcld2. find path rec (P , ctx ′, class name (cld), ctxcld

′
2) = Some ctxcld2 =⇒

(∀ctxcld3. ctxcld2 = ctxcld
′
2 @ ctxcld3 =⇒

(∃ctxcld4. ctxcld1 = ctxcld4 @ ctxcld3))))

Proof. By a well-founded induction on find path rec. When ‘cl = Object’, the lemma
trivially holds. When ‘∃fqn. cl = fqn’, the call splits into ‘find cld (P , ctx , fqn) =

(ctx ′, cld ′)’ and ‘find path rec (P , ctx ′, cl ′, ctxcld
′
1 @ [(ctx ′, cld ′)]) = ctxcld1’ where

‘superclass name (cld ′) = cl ′’. Through the induction hypothesis (and a lemma that
shows that find cld finds a class definition with the requested class name), we know that
‘find path rec (P , ctx ′, cl ′, ctxcld

′
2 @ [(ctx ′, cld ′)]) = ctxcld

′
2@ctxcld3’. Through an-

other lemma3 again proved by a well-founded induction on find path rec, we know that
‘∃ctxcld5. ctxcld1 = ctxcld

′
1 @ [(ctx ′, cld ′)]@ctxcld5’ and ‘∃ctxcld6. ctxcld

′
2@ctxcld3 =

ctxcld
′
2@[(ctx ′, cld ′)]@ctxcld6’. Through a variant of that lemma,4 we can then deduce

‘ctxcld5 = ctxcld6’. Finally, we can show ‘ctxcld1 = ctxcld
′
1 @ [(ctx ′, cld ′)]@ctxcld6 =

ctxcld
′
2@ctxcld3’.

Having proven the general case, we instantiate the accumulator above, ctxcld1, with an
empty list, simplify, and fold the find path rec calls to obtain Lemma 2.

Lemma 3 (Supertype is a valid type). P ` τ≺ τ ′ =⇒ P ` τ ′

Proof. Using Lemma 2 with the definition of both the subtyping relation (above) and the
definition of a valid type (§3.4.4).

3Named path append, it shows that find path rec’s accumulator is the result’s prefix.
4Named fpr same suffix, it shows that changing find path rec’s accumulator will change the res-

ult’s prefix accordingly.

TYPE CHECKING 71

3.4.5 Type reflexivity

As mentioned before, type reflexivity is one of the two basic properties of a type system.
Here, we show that this property holds for every valid LJ type.

Lemma 4 (Type reflexivity). P ` τ =⇒ P ` τ≺ τ

Proof. Apart from using the definitions of both the valid type (§3.4.4) and the subtype
relation (§3.4.3), proving this lemma requires one to show that ‘a class definition corres-
ponding to τ is in the inheritance path of τ ’, which is relatively easy to prove.

In our Isabelle/HOL proofs, however, we use the following (and weaker) version of the
above lemma, since it proved convenient for the soundness proof.

Corollary 5 (Type Reflexivity — Variation). P ` τ≺ τ ′ =⇒ P ` τ≺ τ

Proof. Trivially follows from Lemma 1 and Lemma 4.

3.4.6 Type transitivity

The transitivity property is the other basic property of a type system. We express it in a
completely standard way.

Lemma 6 (Type transitivity). P ` τ≺ τ ′ ∧ P ` τ ′≺ τ ′′ =⇒ P ` τ≺ τ ′′

Proof. Using the definition of the subtype relation (§3.4.3) and a single application of
Lemma 2.

3.5 Type checking

To prevent type errors, every LJ program is typechecked before it executes. We define
type checking in terms of well-formedness relations on the structures in an LJ program.
First, we present some lookup functions used in these relations, and then the relations
themselves. The definitions of these functions and relations are fairly standard, which is
why we (again) recommend a quick scan-through only, on a first reading.

3.5.1 Lookup functions

This subsection shows the lookup functions (directly and indirectly) used within the well-
formedness rules (§3.5.2), apart from those that were introduced previously (§3.3.2). The
functions are presented using the rules described in §1.6.

72 LIGHTWEIGHT JAVA (LJ)

Getting method names of a class

Obtaining names of methods of a class is done in the same manner as for fields: we obtain
the inheritance path for a class, then scan through each class definition for method defini-
tions. The function class methods simply extracts the method definitions from the given
class definition. The following function is used when defining class well-formedness.

methods (P , τ) : (P × τ)→ methopt =

match find path (P , τ) with

None → None | Some ctxcld→ Some (methods in path (ctxcld))

methods in path (cld) : cld→ meth =

match cld with []→ [] | cld :: cld
′ →

(map (λ(cl meth (vd) {meth body })→ meth)(class methods (cld))) @
methods in path (cld

′
)

Looking up field types

Field type lookups are necessary when defining heap and statement well-formedness rules.
To look up a field type for a specific field, f defined by some type, τ , we first determine
the type’s inheritance path, and search through it linearly.

ftype (P , τ, f) : (P × τ × f)→ τopt =

match find path (P , τ) with

None → None | Some ctxcld→ Some (ftype in path (ctxcld, f))

Then, a linear search through the inheritance path looks at each class in turn, start-
ing with subclasses. It locates the field declarations of each class, and searches those
linearly. If f is found in a class definition, but its type could not have been determined
(ftype in fds below returned ⊥), the function fails immediately, ignoring unexplored
class definitions — because all well-formed classes use only valid field types (shown later
in §3.5.2, page 74), this does not detect any errors that would otherwise not be found.

ftype in path (P , ctxcld, f) : (P × ctxcld× f)→ τopt =

match ctxcld with []→ None | ((ctx , cld) :: ctxcld
′
)→

match ftype in fds (P , ctx , class fields (cld), f) with

⊥ → None | Some τ → Some τ | None → ftype in path (P , ctxcld
′
, f)

Finally, field declarations of a specific class are checked in the order they are defined
— as shown later in §3.5.2 (page 74), field names within a class must be distinct, which
implies that ‘if there is a field with a matching name, it is the only such field within the field
declarations of a class.’ If no field with name f is found, the function fails by returning
None. If a field, f , is found, but its type cannot be determined, the function aborts by
returning ⊥. Otherwise, the type found is returned.

TYPE CHECKING 73

ftype in fds (P , ctx , fd , f) : (P × ctx × fd × f)→ τ⊥opt =

match fd with []→ None | (cl f ′ ;) :: fd
′ →

if f = f ′ then match find type (P , ctx , cl) with None → ⊥ | Some τ → Some τ

else ftype in fds (P , ctx , fd , f)

Method type lookup

Method type lookups are required for class and statement well-formedness rules. To find
a method type corresponding to a method name, meth, within a type, τ , we first locate
the corresponding method definition. Then, we find types for all class references in the
method’s signature: τ for method parameter types, and τ ′ for method’s return type. The
function below is used for lifting successful method parameter type lookups.

mtype (P , τ,meth) : (P × τ ×meth)→ πopt =

match find meth def (P , τ,meth) with

None → None | Some (ctx , cl meth (vd) {meth body })→
match find type (P , ctx , cl) with None → None | Some τ ′ →
match lift opts (map (λ(cl var)→ find type (P , ctx , cl)) vd) with

None → None | Some τ → Some (τ → τ ′)

lift opts (opts) : αopt list→ (α list)opt =

match opts with []→ Some [] | (opt :: opts′)→
match opt with None → None | Some v →
match lift opts (opts′) with None → None | Some vs→ Some (v :: vs)

3.5.2 Well-formedness rules

Here, we present the well-formedness relations in a top-down, depth-first fashion. Most
are fairly straightforward.

Program well-formedness (` P)

A program, P , is well-formed iff class names bound in P are “distinct,” and all its class
definitions are well-formed and contain no cycles.

1.P = cldk
k

2.distinct names (P)

3.P ` cldk
k

4. acyclic clds P

` P
WF PROGRAM

74 LIGHTWEIGHT JAVA (LJ)

Distinct names (distinct names (P))

Class names bound in P are “distinct” when the names of all class definitions in P are dis-
tinct from one other,5 which is important to guarantee non-ambiguity for type references.

DN DEF

1.P = cldk
k

2. class name (cldk) = dclk
k

3.distinct (dclk
k
)

distinct names (P)

Class well-formedness (P ` cld)

The following rule defers most checks to the rule below, but also checks that the mentioned
class definition is in P . Note that dcl is a name of a derived class, while cl can also be
Object — the definition is shown in Fig. 3.1 (page 59).

WF CLASS

1. class dcl extends cl { fd meth def } ∈ P 2.P ` (dcl , cl , fd ,meth def)

P ` class dcl extends cl { fd meth def }

Class well-formedness – common (P `ctx (dcl , cl , fd ,meth def))

Below is a rule, which defines when a class definition (of program P found in context ctx)
is well-formed — WF CLASS COMMON. The rule abstracts away from the user syntax of a
class, which makes it applicable in many language extensions. It ensures that (1) the name
of the superclass refers to a valid type,6 (2) the type of the superclass τ is different from the
type of this class, ‘ctx.dcl ’, (3) all field names are distinct, (4–5) fields of the superclass
are name-wise distinct from the fields being defined (no field shadowing), (6) class names
of fields being defined refer to valid types, (7) method definitions are well-formed (in the
context of the current type), (8–13\9) if the current class is overriding a method in the
superclass, then it must preserve its method type (method overriding),7 and (9) methods’
names must be distinct from each other. The function method name simply extracts a
method name from a method definition.

5This is not true when we introduce modules (Chapter 4).
6To determine if a type is valid (§3.4.4), we are required to check that the whole inheritance path for

a particular class name exists. When a program is checked for well-formedness, this judgement must hold
for all its class definitions; therefore, all the links between classes are checked, which is why finding a type
(find type) is enough to show that the type is valid.

7Even though the return types could be co-variant and the argument types contra-variant, we use Java’s
conservative approach of type invariance for both in order to remain compatible with Java’s semantics.

TYPE CHECKING 75

1.find type (P , ctx , cl) = τ

2. ctx.dcl 6= τ 3.distinct (fj
j
)

4.fields (P , τ) = f 5. fj
j ⊥ f

6.find type (P , ctx , clj) = τj
j

7.P `ctx.dcl meth defk
k

8.method name (meth defk) = methk

k

9.distinct (methk
k
)

10.methods (P , τ) = meth ′l
l

11.mtype (P , ctx.dcl , meth ′l) = πl

l

12.mtype (P , τ , meth ′l) = π′l
l

13.meth ′l ∈ methk
k −→ πl = π′l

l

P `ctx (dcl , cl , clj fj ;
j
,meth defk

k
)

WF CLASS COMMON

Method definition well-formedness (P `τ meth def)

A method definition (defined within the type ‘ctx.dcl ’) is well-formed iff (1) parameter
names are distinct from each other, (2) class names of parameters refer to valid types,
(3–4) the statements of the method are well-formed in a type environment where paramet-
ers map to corresponding types, and this maps to the owner of the method, (5) the class
name for the method’s return type refers to a valid type, and (6) the type of the variable
returned by the method’s body is a subtype of the return type.

1.distinct (vark
k)

2.find type (P , ctx , clk) = τk
k

3.Γ = [vark 7→ τk
k] [this 7→ ctx.dcl]

4.P , Γ ` sl
l

5.find type (P , ctx , cl) = τ

6.P ` Γ (y)≺ τ

P `ctx.dcl cl meth (clk vark
k
) { sl

l return y ; }
WF METHOD

Statement well-formedness (P , Γ ` s)

For a block of statements, ‘{ sk
k }’, to be well-formed, each statement must be well-

formed. For variable assignment, ‘var = x ;’, the type of x must be a subtype of the
type of var . For field reading, ‘var = x . f ;’, the type of f must be a subtype of the type
of var . For field writing, ‘x . f = y ;’, the type of y must be a subtype of the type of
f . For the if statement, ‘if (x == y) s1 else s2’, the type of x must be a subtype of the
type of y , or vice-versa, and both statements must be well-formed. For object creation,
‘var = newctxcl();’, the type of cl must be a subtype of the type of var . For the method
call, ‘var = x .meth (y) ;’, the types of the arguments must be element-wise subtypes of

76 LIGHTWEIGHT JAVA (LJ)

the types of the parameters, and the return type of the method must be a subtype of the
type of var .8

WF BLOCK

1.P , Γ ` sk
k

P , Γ ` { sk
k }

WF VAR ASSIGN

1.P ` Γ (x)≺ Γ (var)

P , Γ ` var = x ;

WF FIELD READ

1.Γ (x) = τ

2. ftype (P , τ , f) = τ ′

3.P ` τ ′≺ Γ (var)

P , Γ ` var = x . f ;

WF FIELD WRITE

1.Γ (x) = τ

2. ftype (P , τ , f) = τ ′

3.P ` Γ (y)≺ τ ′

P , Γ ` x . f = y ;

WF IF

1.P ` Γ (x)≺ Γ (y) ∨ P ` Γ (y)≺ Γ (x)

2.P , Γ ` s1 3.P , Γ ` s2

P , Γ ` if (x == y) s1 else s2

WF NEW

1.find type (P , ctx , cl) = τ

2.P ` τ≺ Γ (var)

P , Γ ` var = newctxcl();

WF MCALL

1. y = yk
k 2.Γ (x) = τ

3.mtype (P , τ , meth) = τk
k → τ ′

4.P ` Γ (yk)≺ τk
k

5.P ` τ ′≺ Γ (var)

P , Γ ` var = x .meth (y) ;

Note how the ctx in the object creation statement, ‘var = newctxcl();’, is used to look
up the type, τ , in WF NEW. By simply passing the context through to the lookup function,
the rule stays independent of the inner structure of context — this means that languages
with different definitions of ctx can still reuse all of the above rules.

3.6 Proof of type soundness

In this section, we make sure that the type system and the well-formedness rules do not
contain errors. We then use this result to guarantee that no LJ program will fail due to a
type error if it satisfies the well-formedness rules (§3.5).

The well-formedness rules must be strong enough to ensure that the next reduction step
can execute successfully. At the same time, the statement reduction rules must respect the
well-formedness rules, so that the resulting configuration remains well-formed.

We first describe the conditions for configuration well-formedness, and then prove that
our type system and well-formedness rules are error-free, i.e. we prove type soundness.

8The first premise for WF FIELD READ (and similar premises) cannot be inlined, since it is a lookup
that lifts an option type to a bare type, which is used as such in the next premise. Since option type lifts
are often required for type comparison (subtyping), we created a judgement that lifts both option types (if
required), and (if lifting succeeds) compares the two resulting types — an example of this is the premise for
WF VAR ASSIGN. The first premise of the WF MCALL is there to make the Ott’s Isabelle/HOL easier to use.

PROOF OF TYPE SOUNDNESS 77

The proof is done in the usual way: by proving progress and type preservation properties.
The following proofs are the natural language versions of our Isabelle/HOL proofs.

3.6.1 Configuration well-formedness (Γ ` config)

The concept of configuration well-formedness, ‘Γ ` config’, is important for proving
type soundness. This subsection defines the property.

A configuration (defined in §3.3.1, page 61) that has reached an exception is well-
formed if the program, P , the variable state, L, the heap, H , are well-formed. For a
normal configuration, the statements yet to be executed, sk

k, must also be well-formed.

WF ALL EX

1. ` P 2.P ` H

3.P , Γ, H ` L

Γ ` (P , L, H , Exception)

WF ALL

1. ` P

2.P ` H

3.P , Γ, H ` L

4.P , Γ ` sk
k

Γ ` (P , L, H , sk
k)

In fact, LJ and our extensions of it are all type sound even without the three premises
in WF ALL EX. This is because (1) the program terminates whenever an exception is
thrown, since we do not implement exception handling, and (2) the proof of type sound-
ness does not rely on the consistency between well-formedness rules for the intermediate
configurations and well-formedness rules for the final configurations.

The heap, in turn, is well-formed iff it has a finite domain, and all field values stored
in the heap have types that are element-wise subtypes of the corresponding field types.

WF HEAP

1.finite (dom (H))

2.∀oid ∈ dom (H) .

 ∃τ .H (oid) = τ ∧ ∃f .fields (P , τ) = f ∧

∀f ∈ f .∃τ ′ .

(
ftype (P , τ , f) = τ ′ ∧
P , H ` H (oid , f)≺ τ ′

)
P ` H

A variable state, on the other hand, is well-formed iff it has a finite domain, and all
variables in the type environment9 have types that are supertypes of the types of values
associated with them.

WF VARSTATE

1.finite (dom (L))

2.∀x ∈ dom (Γ) .P , H ` L (x)≺ Γ (x)

P , Γ, H ` L

9Not ‘all variables in the variable state.’ This subtlety is explained in the proof of progress (§3.6.3).

78 LIGHTWEIGHT JAVA (LJ)

The second premise in the above rule is, in fact, not a subtyping relation, since it
compares a value and a type. It refers to the value subtyping relation defined by the two
rules below: WF NULL says that null’s type is a subtype of any type, while WF OBJECT

states that for an object identifier, oid , to be a value subtype of a type, the type associated
with oid in the heap, H , must be a subtype of that type — this also implies that oid has a
valid mapping in the heap.

WF NULL

1. τopt = τ

P , H ` null≺ τopt

WF OBJECT

1.P ` H (oid)≺ τopt

P , H ` oid≺ τopt

The domains of the variable state and the heap need to be finite to ensure that there are
always fresh identifiers for each in case of method calls and object creations, respectively.

3.6.2 Helper lemmas

To prove the progress and the type preservation properties, we use many helper lemmas,
the most important of which are described in this subsection.

Lemma 7 (No private fields).

` P ∧ P ` τ≺ τ ′ ∧ ftype (P , τ ′, f) = τ ′′ ∧ fields (P , τ) = f =⇒ f ∈ f

Explanation. If a program, P , is well-formed, τ is a subtype of τ ′, τ ′ defines a field f of
type τ ′′, and the fields of τ are f , then f must be within f .

Proof. The ftype function (page 72) is defined in terms of find path (page 63), which
is in turn defined by find path rec (page 62). In the proof, we unfold the definition
of ftype to find path rec, and use a well-founded induction to show that ‘f ∈ f

′
’,

where ‘fields (P , τ ′) = f
′
’. Then, we use the definition of subtyping (page 69) and

find path rec to show that the inheritance path for τ ′ is a suffix of the one for τ . Finally,
we unfold the definition of fields (page 64) to fields in path (page 64), and show by
structural induction on the inheritance path that ‘f ∈ f ’.

Lemma 8 (Field type preservation).

` P ∧ P ` τ≺ τ ′ ∧ ftype (P , τ ′, f) = τ ′′ =⇒ ftype (P , τ , f) = τ ′′

Explanation. If a program, P , is well-formed, τ is a subtype of τ ′, and the type of field f

within τ ′ is τ ′′, then the type of a field, f , within τ must also be τ ′′.

Proof. First, we unfold the definition of ftype to get inheritance paths for both τ and
τ ′. Then, we use the definition of subtyping and find path rec to show that the in-
heritance path for τ ′ is a suffix of the one for τ . Through program well-formedness

PROOF OF TYPE SOUNDNESS 79

(page 73), we show that every class definition in either inheritance path must be well-
formed. Finally, we induct over the derivation of find path rec, using premises (4–5) of
the WF CLASS COMMON (page 74) to show the preservation of field types.

Lemma 9 (Method type preservation).
` P ∧ P ` τ≺ τ ′ ∧ mtype (P , τ , meth) = π ∧ mtype (P , τ ′, meth) = π′

=⇒ π = π′

Explanation. If a program, P , is well-formed, τ is a subtype of τ ′, the method type of
method named meth within τ is π, the method type of method named meth within τ ′ is
π′, then π must be equal to π′.

Proof. First, we unfold the definition of mtype (page 73) to get inheritance paths for
both τ and τ ′. Then, we use the definition of subtyping and find path rec to show that
the inheritance path for τ ′ is a suffix of the one for τ . Through program well-formedness,
we show that every class definition in either inheritance path must be well-formed. Fi-
nally, we induct over the derivation of find path rec, using premises (8–12) of the
WF CLASS COMMON to show the preservation of method types.

Lemma 10 (Method type to method definition).
` P ∧ mtype (P , τ , meth) = π ∧ P ` τ ′≺ τ

=⇒ ∃ctx meth def . find meth def (P , τ ′, meth) = (ctx , meth def)

Explanation. If a program, P , is well-formed, τ defines a method named meth (of some
type π), and τ ′ is a subtype of τ , then τ ′ must define a method named meth.

Proof. By using Lemma 9 to obtain ‘mtype (P , τ ′, meth) = π’, then unfolding the
definition of mtype.

3.6.3 Progress

The progress property guarantees that an LJ program will not get stuck if there are state-
ments left to execute. There is nothing particularly special about this proof of progress.

Theorem 11 (Progress).

Γ ` (P,L,H, s) ∧ s 6= [] =⇒ ∃config. (P,L,H, s) −→ config

Explanation. If a configuration, ‘(P,L,H, s)’, is well-formed in some type environment,
Γ, and there are still some statements, s, left to execute, then there exists some configura-
tion, config , which the current configuration reduces to in one step, −→.

Proof. By case splitting on the next statement to execute, s . Due to WF ALL (page 77),
we know that ‘P , Γ ` s’, i.e. that s is well-formed. We then consider each case:

80 LIGHTWEIGHT JAVA (LJ)

1. s = ({ sk
k }): application of R BLOCK (statement reduction rules are on page 65).

2. s = (var = x ;): from WF VAR ASSIGN (statement well-formedness rules are
on page 76), we know that ‘x ∈ dom (Γ)’; then, we know from WF VARSTATE

(page 77) that ‘x ∈dom (L)’;10 it trivially follows that ‘∃v . L (x) = v ’, with which
we can apply R VAR ASSIGN.

3. s = (var = x . f ;): from WF FIELD READ, we know that ‘x ∈ dom (Γ)’ (from
‘Γ (x) = τ ′’) and ‘ftype (P , τ ′, f) = τ ′′’; from WF VARSTATE, we then know that
‘x ∈ dom (L)’; if ‘L (x) = null’, then we can apply R FIELD READ NPE; other-
wise, we know that ‘∃oid . L (x) = oid ’; from WF HEAP (page 77) and WF OBJECT

(page 78) it follows that ‘oid ∈dom (H)’, ‘∃τ. H (oid) = τ , P ` τ ≺ Γ (x)’, and
that ‘∃f . fields (P , τ) = f ’; we can then use Lemma 7 (page 78) to show that ‘f ∈
f ’; with WF HEAP, we can then show that ‘∃τ ′′′. P , H ` H (oid , f)≺ τ ′′′’, from
which we know ‘∃v . H (oid , f) = v ’, with which we can apply R FIELD READ.

4. s = (x . f = y ;): from WF FIELD WRITE, we know that ‘x ∈ dom (Γ)’ (from
‘Γ (x) = τ ’) and ‘y ∈dom (Γ)’ (from ‘P ` Γ (y)≺ τ ′’); from WF VARSTATE, we
then know that ‘x ∈ dom (L)’ and ‘y ∈ dom (L)’; if ‘L (x) = null’, then we can
apply R FIELD WRITE NPE; otherwise, we know that ‘∃oid . L (x) = oid ’, so we
can apply R FIELD WRITE.

5. s = (if (x == y) s1 else s2): from WF IF, we know that ‘x ∈ dom (Γ)’ and ‘y ∈
dom (Γ)’ (from ‘P ` Γ (x)≺ Γ (y) ∨ P ` Γ (y)≺ Γ (x)’); from WF VARSTATE,
we then know ‘x ∈dom (L)’ and ‘y∈dom (L)’, which means that ‘∃v . L (x) = v ’
and ‘∃w . L (y) = w ’; if ‘v = w ’, then we can apply R IF TRUE; otherwise, we can
apply R IF FALSE.

6. s = (var = newctxcl();): from WF NEW, we know that ‘P ` τ ≺ Γ (var)’
(where ‘find type (P , ctx , cl) = τ ’); from Lemma 1 (page 69), we know that
τ is a valid type; since every valid type has a valid class hierarchy, we know that
‘∃fk

k
. fields (P , τ) = fk

k
’; from WF HEAP, we know ‘finite (dom (H))’, from

which we can deduce that ‘∃oid . oid /∈ dom (H)’; finally, we can apply R NEW.

7. s = (var = x .meth (yk
k) ;): from WF MCALL (page 76), we know that ‘x ∈

dom (Γ)’ (from ‘Γ (x) = τ ’); from WF VARSTATE (page 77), we then know that
‘x ∈ dom (L)’; if ‘L (x) = null’, then we can apply R MCALL NPE; otherwise,
we know that ‘∃oid . L (x) = oid ’; from WF HEAP (page 77) and WF OBJECT

(page 78) it follows that ‘oid ∈ dom (H)’, ‘∃τ ′. H (oid) = τ ′’, and ‘P ` τ ′ ≺
10It is because of steps like this that we need ‘∀x ∈dom (Γ)’ and not ‘∀x ∈dom (L)’ in WF VARSTATE

(page 77), otherwise we would not be able to deduce that ‘x ∈dom (L)’.

PROOF OF TYPE SOUNDNESS 81

τ ’; from WF MCALL, we also know ‘∃π. mtype (P , τ , meth) = π’ — using
Lemma 10 (page 79), we show ‘∃ctx meth def . find meth def (P , τ ′, meth) =

(ctx , meth def)’; from WF VARSTATE, we also have fresh and distinct variables
we can use for the method flattening process; finally, we can apply R MCALL.

As mentioned before, the proofs presented here are the natural language versions of the
corresponding mechanically-verified Isabelle/HOL proofs. The original progress proof
(excluding helper lemmas) is shown in Appendix B; the rest can be found online.

3.6.4 Type preservation

The type preservation property guarantees preservation of configuration well-formedness
through execution. There is a subtlety in the method call case of the proof, which we
describe right after the main text (page 83). Apart from this, the proof is fairly standard
for a Java-like language.

Theorem 12 (Type preservation).

Γ ` config ∧ config −→ config ′ =⇒ ∃Γ′. Γ ⊆m Γ′ ∧ Γ′ ` config ′

Explanation. If config is a well-formed configuration in some type environment, Γ, and
config reduces to config ′ through statement reduction, −→, then config ′ is well-formed in
some greater11 (⊆m12) type environment, Γ′.

Proof. By case splitting on the statement reduction relation. In each of the eleven cases,
except in R MCALL, the type environment Γ′ is equal to Γ. Due to WF ALL (page 77), we
know that all elements of the initial configuration, config , are well-formed. The configur-
ation, config , is unpacked into ‘(P , L, H , s sk

k)’, where s is the statement just executed.
We then consider each reduction rule:

1. R BLOCK, s = ({ sk
k }): by WF BLOCK (statement well-formedness rules are on

page 76), config ′ is trivially well-formed with WF ALL.

2. R VAR ASSIGN, s = (var = x ;): we must show ‘P , H ` L [var 7→ v] (var)≺
Γ (var)’, or equivalently ‘P , H ` v ≺ Γ (var)’, where ‘L (x) = v ’; if ‘v = null’,
WF NULL applies; otherwise, ‘∃oid . v = oid ’; using WF VARSTATE and WF HEAP,
we know ‘∃τ. H (oid) = τ ’ (which simplifies our goal to ‘P ` τ ≺ Γ (var)’) and
‘P ` τ ≺ Γ (x)’; from WF VAR ASSIGN, we know that ‘P ` Γ (x)≺ Γ (var)’;
finally, we can use type transitivity (Lemma 6) to show ‘P ` τ≺ Γ (var)’.

11The type preservation property does not require the type environment to grow; this is simply a con-
sequence of our semantics, which we prove here formally.

12Since Γ is a map, we need the sub-map relation. The symbol was borrowed from Isabelle/HOL.

82 LIGHTWEIGHT JAVA (LJ)

3. R FIELD READ NPE, s = (var = x . f ;): WF ALL EX (page 77) trivially applies.

4. R FIELD READ, s = (var = x . f ;): we must show ‘P , H ` L [var 7→ v] (var)≺
Γ (var)’, or equivalently ‘P , H ` v ≺ Γ (var)’, where ‘L (x) = oid ’, and where
‘H (oid , f) = v ’; if ‘v = null’, WF NULL applies; otherwise, we know ‘∃oid ′. v =

oid ′’; using WF HEAP and WF VARSTATE, we know ‘∃τ1. H (oid ′) = τ1’, which
simplifies our goal to ‘P ` τ1 ≺ Γ (var)’; from WF FIELD READ, we know
‘∃τ2. Γ (x) = τ2’, ‘ftype (P , τ2, f) = τ3’, and ‘P ` τ3≺ Γ (var)’; with WF HEAP

and WF VARSTATE, we know ‘∃τ4. H (oid) = τ4’, ‘∃τ5. ftype (P , τ4, f) = τ5’,
and ‘P ` τ1≺ τ5’; using Lemma 8 (page 78), we show that ‘τ3 = τ5’; finally, we
use Lemma 6 (page 71) to show that ‘P ` τ1≺ Γ (var)’.

5. R FIELD WRITE NPE, s = (x . f = y ;): WF ALL EX trivially applies.

6. R FIELD WRITE, s = (x . f = y ;): from WF FIELD WRITE, we know ‘∃τ1. Γ (x) =

τ1’, ‘ftype (P , τ1, f) = τ2’, and ‘P ` Γ (y)≺ τ2’; we must show that the resulting
heap, ‘H [(oid , f) 7→ v]’, is well-formed, where ‘L (x) = oid ’ and ‘L (y) = v ’;
according to WF HEAP, this amounts to showing that ‘P , H ` v ≺ τ4’, where
‘H (oid) = τ3’ and ‘ftype (P , τ3, f) = τ4’; if ‘v = null’, WF NULL applies;
otherwise, we know that ‘∃oid ′. v = oid ′’; using WF VARSTATE and WF HEAP, we
know that ‘∃τ5. H (oid ′) = τ5’, which simplifies our goal to ‘P ` τ5≺ τ4’; using
Lemma 8 (page 78), we know that ‘τ2 = τ4’; from WF VARSTATE, we know that
‘P ` τ5≺ Γ (y)’; finally, we use Lemma 6 (page 71) to show that ‘P ` τ5≺ τ4’.

7. R IF TRUE, s = (if (x == y) s1 else s2): by WF IF, config ′ is trivially well-formed
with WF ALL.

8. R IF FALSE, s = (if (x == y) s1 else s2): by WF IF, config ′ is trivially well-formed
with WF ALL.

9. R NEW, s = (var = newctxcl();): goals are ‘P , H [oid 7→ (τ , fk 7→ null
k
)] `

oid ≺ Γ (var)’ and ‘P , H ` H (oid , f) ≺ τ ′’, where oid is the object identi-
fier pointing to the newly created object, τ its type, f any field of τ , and τ ′ the
corresponding type of that field; using WF VARSTATE, the first goal reduces to
‘P ` τ ≺ Γ (var)’, which trivially follows from WF NEW (page 76); since all
field values are initialised to null, the second goal reduces to ‘P , H ` null≺ τ ′’
for all fields, which holds by WF NULL (page 78).

10. R MCALL NPE, s = (var = x .meth (yk
k) ;): WF ALL EX trivially applies.

11. R MCALL, s = (var = x .meth (yk
k) ;): from WF MCALL (page 76) and R MCALL

(page 65), we know that ‘L (x) = oid ’, a parameter variable vark has type τk , var ′k
is a fresh substitute for vark , and x ′ is a fresh name replacing this; Γ′ is therefore
instantiated to ‘Γ[var ′k 7→ τk

k
] [x ′ 7→ τ1]’, where τ1 is the type where the method

is defined; by unfolding the definition of find meth def (page 64) to find path

PROOF OF TYPE SOUNDNESS 83

(page 63), and then using a variant of structural induction over inheritance path in
find meth def path (page 64) and Lemma 2 (page 70), we show that τ1 must be a
supertype of H (oid), the runtime type of the object on which the method was called,
and, together with the program well-formedness (page 73), that the method called
must be well-formed (page 75); the variables in the method body are translated
according to the translation context, θ, where ‘θ = [vark 7→ var ′k

k
] [this 7→ x ′]’,

so we must show well-formedness of the translated method body, s ′′j
j
, within the

new type environment, Γ′, i.e. ‘P , Γ′ ` s ′′j
j
’ — this is done by rule induction on

the statement well-formedness relation (page 76), which involves tedious proofs
of well-formedness preservation through translation; we must also show the well-
formedness of the generated assignment, ‘var = y ′ ;’ (where y ′ is the translated
version of the variable y the method returns), in Γ′, i.e. ‘P , Γ′ ` var = y ′ ;’,
which holds when ‘P ` Γ′ (y ′)≺ Γ′ (var)’; from WF MCALL, we know that ‘P `
τ2≺ Γ (var)’, where τ2 is the static return type of the method; from WF METHOD,
we know that ‘P ` Γ (y) ≺ τ2’; since var is not re-mapped in Γ′, we know that
‘Γ′ (var) = Γ (var)’; also, since y is either a vark or this, we can show that ‘θ (y) =

y ′ =⇒ Γ′ (y ′) = Γ (y)’; then, we can use Lemma 6 (page 71) to show that ‘P `
Γ′ (y ′)≺ Γ′ (var)’; finally, we must show the well-formedness of the new variable
stack, L′, where ‘L′ = L [var ′k 7→ vk

k
] [x ′ 7→ oid]’, and where vk is the value of the

method argument yk ; therefore, we must show that ‘P , H ` vk ≺ Γ′ (var ′k)’ and
‘P ` H (oid)≺ Γ′ (x ′)’; from WF MCALL, we know that ‘P ` Γ (yk)≺ Γ (vark)’;
from WF VARSTATE, we know that ‘P , H ` vk ≺ Γ (yk)’; as above, we show
that ‘Γ′ (var ′k) = Γ (vark)’; we then use Lemma 6 to show that ‘P , H ` vk ≺
Γ′ (var ′k)’; the second goal simplifies to ‘P ` H (oid)≺ τ1’, which we have already
shown above.

Subtlety in the definition of the method call statement

The use of x ′ (in R MCALL, Fig. 3.3, page 65) is necessary for the type-checking to go
through, i.e. we could not have used the existing x instead, even though the two have
identical dynamic types. This subtlety arises due to LJ’s support for method overriding: a
method body is well-formed in a type environment where this is associated with the type
where the method is defined — in our case, this type is τ1. Therefore, the method’s body
does not (in general) typecheck in a type environment where this is associated with Γ (x),
since Γ (x) can be a supertype of τ1. This property is preserved through variable transla-
tion. Associating x with τ1 rather than with H (oid) makes well-formedness preservation
proofs easier, since the original statements are well-formed against τ1, not H (oid).

84 LIGHTWEIGHT JAVA (LJ)

3.7 Conclusion

It is fairly easy to extend LJ. Many terms can be re-defined without affecting the con-
sistency of the rest of the definition. Specifically, our extensions of LJ (Chapter 4 and
Chapter 6) make substantial changes to the definition of a program, P , a fully-qualified
name, fqn, and the program context, ctx , while reusing most of the rest. Also, since LJ’s
definition is written in Ott, many consistency checks are performed automatically.

LJ does not implement a frame stack. The drawbacks of this are that (a) the semantics
is a bit further away from a standard implementation of an imperative language, (b) the
program context needs to be pre-stored within an object creation statement, when it could
otherwise have been put inside a frame of a stack, (c) the method call reduction rule
(R MCALL, page 65) has a few extra judgements due to the freshness conditions, and the
translation, and (d) we need to prove statement well-formedness preservation under vari-
able translation. However, by not having a stack, we avoid quite a bit of the semantic and
proof complexity. More specifically, we avoid (i) a reduction rule and a well-formedness
rule for a method return, i.e. for popping the stack, (ii) a more complex (stacked) struc-
ture of the typing environment, (iii) a few rules for stack well-formedness [12, p. 22], and
(iv) proofs of lemmas about the structure of the stack and the typing environment, and
their correspondence. Overall, we obtain a simpler semantics, which was our goal.

Having the semantics within Isabelle/HOL, we can perform symbolic execution. One
of the possible future directions is to try to generate a reference implementation of LJ
directly from its Isabelle/HOL definition using the latest code generation tools [20].

Our experience shows that small changes to the definition of LJ most often require
only small changes to the Isabelle/HOL proof scripts. Type soundness of an extension can
either be proven directly, or by showing that every valid program can be simplified to a
valid LJ program — the latter approach was taken for LFJ [14].

4
Lightweight Java Module System (LJAM)

In the first part of the introduction (§1.1), we showed that the Java Module System (JMS)
adds two key features to Java, component-level information hiding and versioning, while
also focusing on easy distribution and deployment. Our overview of the system was based
on our detailed analysis of the two hundred pages of draft documents, written solely in
natural language and so inevitably containing many ambiguities.

The following example is taken from the draft specification [51, p. 68]:

“There is at most one module instance instantiated from each module defin-
ition per repository instance. A module definition can have multiple module
instances through multiple repository instances.”

From the above statement, and from the rest of the document, it is not clear whether the
module instances are created where they are requested, or where their module definitions
are stored. Both options are entirely plausible, and since the latter seemed too restrictive
to us, we were sure that the authors meant the former. We were wrong. The need to form-
alise the documents was obvious: to detect errors, remove ambiguities, promote precise
discussion of the design, and allow properties to be (dis-)proven.

Therefore, we created mathematical entities for (what we think are) the main concepts
in the draft documents, and then related these entities with formal rules according to the
informal description. Where the documents were complete, we followed them closely;
elsewhere we made reasonable choices. In case of ambiguities, as above, we contacted the
authors of the documents for clarification.

86 LIGHTWEIGHT JAVA MODULE SYSTEM (LJAM)

There are two draft documents: JSR-294 [52], which outlines the developer’s view,
and JSR-277 [51], which describes the innerworkings of the module system. We form-
alise the core of the two documents in an extension of Lightweight Java (LJ), named the
Lightweight Java Module System (LJAM).

More specifically, we formalise (i) the syntax for specifying member packages, ex-
ported classes, and imported modules, (ii) the semantics of the administrator actions (in-
stalling, un-installing, and initialising module definitions), and (iii) class resolution, which
searches for class definitions across package, module, and repository boundaries.

However, we do not formalise versions, or any other annotation on modules — we
believe their semantics to be orthogonal. Our model also excludes custom import policies,
i.e. custom code responsible for selecting and initialising imported module definitions,
and then linking together the resulting module instances; formalising this is an interest-
ing option for future work, due to the restricted context of execution and possibly non-
terminating initialisation. The draft documents also specify various techniques for back-
ward compatibility, e.g. supporting JAR (Java ARchive) files; we do not model these, since
they do not constitute the core of the module system, and would unnecessarily complicate
our formalisation. Since the design of Java Module System is still on-going, there are some
minor details for which the original design and our formalisation are now inconsistent —
these are described at the end of this chapter (§4.7).

First, we give an informal description of JMS (§4.1). Then, we present the syntax, the
operational semantics, the type system (§4.4), and type-checking rules (§4.5). We prove
in Isabelle/HOL that the resulting formalisation is type sound (§4.6). While this chapter
focuses mainly on the formalisation of the module system, the next (Chapter 5) describes
the main problems of the system, and our proposals for solving them.

The full Ott definition, the complete Isabelle/HOL proof of type soundness, and vari-
ous other LJAM documents can be found at the following address:

http://www.cl.cam.ac.uk/research/pls/javasem/ljam/

http://www.cl.cam.ac.uk/research/pls/javasem/ljam/

AN INFORMAL DESCRIPTION 87

4.1 An informal description

The basic unit of the Java Module System is a module definition, a JAR-like archive that
contains compiled Java code. A module definition is defined with (i) compiled Java code,
and (ii) a module file. We can obtain (i) by compiling regular Java code with a Java
compiler, e.g. javac, while (ii) is a text file, normally written by hand.

A module file can specify (a) which Java packages should be put into the module defin-
ition, (b) which other module definitions this module definition will import, and (c) which
types (either imported, or defined locally) should be available to client modules. There-
fore, a module file specifies membership, imports, and exports.

In the context of the example in §1.1.2, suppose we were defining the XSLT module
definition. The module definition should contain compiled Java code belonging to the
xslt Java package, import the XMLParser module definition, and export its own class,
xslt.Processor. The following module file specifies (a) membership, (b) imports,
and (c) exports (the abstract syntax for a module file is given in §4.2.3):

module XSLT {

member xslt;

import XMLParser;

export xslt.Processor; }

To compile the source code for a module definition (in our case, the xslt Java pack-
age), the definitions of the types exported by the imported module definitions (in our case,
the class xml.parser.Parser) need to be available; either their source code, or their
bytecode. The latter can be obtained from the imported module definitions.

With the compilation of the member Java packages complete, we can put the resulting
Java bytecode and the module file into a JAR-like file, i.e. a module definition (in our case,
XSLT). This will most likely be achieved with a jar-like program, which might perform
the compilation step automatically.1

Once we have obtained a module definition, we can install it into a Java Module Sys-
tem, most likely through an OSGi-like console.2 If the files containing XMLParser and
XSLT module definitions are named xmlparser.md and xslt.md, respectively, we
would install and initialise them as follows (ignore ‘bootstrap r.’, for now):

jms> bootstrap_r.install(file:/programs/jms/xmlparser.md);

jms> bootstrap_r.install(file:/programs/jms/xslt.md);

jms> bootstrap_r.initialise(XSLT);

XMLParser initialised (mi: XMLParser-1).

XSLT initialised (mi: XSLT-2; linked with XMLParser-1).

1The draft documents do not define the exact packaging procedure.
2The administrator interaction with a JMS runtime has not been fully specified.

88 LIGHTWEIGHT JAVA MODULE SYSTEM (LJAM)

A module file can also specify the main class for a module definition, i.e. a class whose
main method will get executed once the module definition has been initialised. In this
thesis, we do not formalise the specification or the semantics of main classes.

The execution is guided by module instances, which are classloaders that either load
a class from the corresponding module definition, or delegate loading to an import. The
import declarations within the module files determine how the module instances are linked
together. In the above example, two module instances are created, XMLParser-1 and
XSLT-2, one for each module definition, XMLParser and XSLT, respectively. The mod-
ule instance XSLT-2 is linked to XMLParser-1 (not vice-versa), which implies that
the code within XSLT-2 can access its own types, and the exported public types of
XMLParser-1. The exact semantics of type resolution in JMS is defined in §4.3.1.

The module system also defines repositories, which are runtime structures used for
installing, finding, initialising, and un-installing module definitions. Every JMS runtime
must contain the bootstrap repository, named bootstrap r, which in turn contains the
core platform module definition (core Java platform classes). In the above example, the
two module definitions were installed and initialised within the bootstrap repository.

Each repository can have multiple child repositories. Since a module definition can
import only module definitions within its own and ancestor repositories, we can control
the dependency and isolation among module definitions through the use of multiple re-
positories. The exact semantics of how a particular module definition is located in the
hierarchy of repositories is shown in §4.3.1, page 97.

Finally, if we install all module definitions for a particular application in a leaf child
repository, we can stop and remove the application simply by removing its repository. In
this thesis, we do not define the syntax or the semantics of repository creation and removal.

4.2 Syntax

The following subsections describe how we distinguish between LJAM compile-time and
LJAM runtime code (§4.2.1), and show the updated definition of the context (§4.2.2), and
LJAM’s user (§4.2.3) and inner (§4.2.4) syntax.

4.2.1 Compile-time code vs. runtime code

In LJ, we did not distinguish between the abstract syntax of the compile-time code (pure
abstract syntax) and the annotated runtime code (annotated abstract syntax). This is be-
cause the ctx annotation (guiding the runtime class resolution) of the object creation state-
ment, ‘var = newctxcl();’, was always empty in LJ, so distinguishing between the two
would be an overkill. We introduced only the annotated abstract syntax, because this way
we were able to achieve a high level of definition reuse for LJAM and iJAM (Chapter 6).

SYNTAX 89

In LJAM, however, we distinguish between the two versions of the syntax because
(i) ctx is not empty (defined in §4.2.2), and plays an important role (shown later in §4.4),
and (ii) both versions of the abstract syntax are used extensively in the LJAM’s definition,
so distinguishing between the two makes the definition more precise and more readable.

The pure abstract syntax (compile-time code) of an LJAM statement is:

sc ::= statement, compile-time code
| { sck

k } block
| var = x ; variable assignment
| var = x . f ; field read
| x . f = y ; field write
| if (x == y) sc1 else sc2 conditional branch
| var = new cl (); object construction
| var = x .meth (y) ; method call

From here on, any non-terminal superscripted with c, e.g. sc, denotes abstract syntax
with no ctx annotations, i.e. compile-time code. The compile-time code is annotated just
before the type-checking procedure — this is shown later in §4.3.3. Apart from the ctx

annotations, the two versions of the syntax are identical.
Note that the annotation is only required for the ‘object creation’ statement, since only

that statement contains a class identifier. At runtime, a classloader then uses such a context
annotation to determine the type and the field names (corresponding to a class identifier),
both of which are required to create a valid heap entry. Since the set of class definitions
visible from any particular context can only grow (this holds for all our formalisations),
we could have alternatively (and equivalently) annotated ‘object creation’ statements with
types and field names (determined at link-time), instead.

4.2.2 LJAM’s context (ctx)

Even though the draft documents do not describe any notion of an execution context, this
concept is required in the formalisation, since it needs to be clear where the class resolution
procedure starts searching, and where a class definition is found. For the module system
to support component-level information hiding, module instances must create their own
class namespaces. The fact that a module instance will create its own namespace is evident
from the intent of implementing module instances with classloaders [51].3

Therefore, LJAM context, ctx , which was always empty for LJ, is defined as follows.

ctx ::= context
| mi.pn def.

3As mentioned in §1.1.3, each classloader creates its own class namespace.

90 LIGHTWEIGHT JAVA MODULE SYSTEM (LJAM)

SRC ::= source files (cldc)
| cldc M def.

cldc ::= class, compile-time code
| pd am class dcl extends cl { fd meth def c } def.

pd ::= package declaration (pn)
| package pn ; M def.

am ::= access modifier
| default
| public public

Figure 4.1: LJAM’s changes to the class syntax

Meta-variables mi and pn are used for module instance identifiers and package names,
respectively. Together, the pair uniquely identifies any LJAM’s execution context.

4.2.3 User syntax

Developers can now write module files, mf , which have the following user syntax (the
details of which are explained in the following paragraphs):

superpackage mn {memberpn; importm; exportfqn; }

The definitions for module names, mn, and fully-qualified names, fqn, are:

mn ::= module name
| core m core module
| m standard module

fqn ::= fully-qualified name
| pn.dcl def.

The core m refers to the system’s core module definition, which holds all the library
classes, while m is a meta-variable that can refer to any other module definition; mn is
used to refer to either.

A fully-qualified class name, fqn, can uniquely identify a class within a single module
definition, but not within the whole system, since it is not prefixed with a module name.
The ability to prefix type references with module names would require changing the under-
lying user syntax, which JMS cannot do due to backward compatibility constraints [51].

The class source files now include package declarations, pd , and access modifiers, am

— see Fig. 4.1. Note that we define only the default (package) and the public access
modifiers, because the draft JSRs change the semantics only for these two.

OPERATIONAL SEMANTICS 91

4.2.4 Inner syntax

The JSRs describe the runtime as a directed graph of repositories related with the parent-
child relationship, where the root of the graph is the bootstrap repository, which contains
the core Java libraries. Each of the non-bootstrap repositories can be used for installing,
un-installing, and initialising module definitions. As mentioned earlier, the documents
are not clear as to where and how the module instances are stored. From the available
information, we created the following structures that can describe a runtime state.

A program, P , is now composed of a repository context, RC , and a module hierarchy4,
MH . The former holds information about all repositories and relationships among them,
whereas the latter describes the connections among the existing module instances. The
meta-variable r is used for repository names (different from bootstrap r). Figure 4.2
shows the abstract syntax of these concepts — note that the productions of the repository
context, RC , the repository cache, φ, and the module hierarchy, MH , are, in fact, meta-
productions (§1.6.1).

The repository context, RC , is a partial map, which maps repository names, rn, to
corresponding structures. Each repository structure, R, consists of installed module defin-
itions, mdc, and its own cache, φ, where each module definition installed in the repository
can be mapped to a module instance identifier of its module instance.

In a module hierarchy, MH , each module instance identifier, mi , is mapped to the
corresponding module instance, md , and to a list of module instances identifiers, mi, of
imported module definitions.

Finally, we also have administrator actions, a. Once the module system is running,
the administrator can, by inserting these actions into the system, install a compile-time
version of a module definition, mdc, un-install a non-core module definition (named m),
or initialise (and optionally execute) a non-core module definition (named m).

4.3 Operational semantics

The definition of a configuration, config , is the same as in LJ, i.e. a tuple of a program,
P , a variable state, L, a heap, H , and statements left to execute, sl l. It differs internally
through the different definition of the program, P : in LJ, it is a list of class definitions,
while in LJAM, it is a tuple of a repository context, RC , and a module hierarchy, MH .

The rules of the small-step operational semantics for LJAM’s statements are syntactic-
ally identical to those of LJ (§3.3.3, page 66). LJAM also uses the same variable translation
when flattening method calls. The statement semantics in LJAM still differs from that of
LJ, though — this is due to a different class resolution, which we show in the following

4One should not draw analogies between module hierarchies and class hierarchies, since the former holds
information about the runtime links, while the latter defines the inheritance relation.

92 LIGHTWEIGHT JAVA MODULE SYSTEM (LJAM)

P ::= program
| (RC , MH) def.

RC ::= repository context (rn ⇀ R)
| [] M empty repository context
| RC [rn 7→ R] M rn maps to R in RC

rn ::= repository name
| bootstrap r bootstrap
| r standard

R ::= repository
| bootstrap repository {mdc ; φ } bootstrap
| repository r child of rn {mdc ; φ } standard

mdc ::= module definition
| modulemn { cldcm fqn } def.

φ ::= repository’s cache (mdc ⇀ mi)
| [] M empty repository’s cache
| φ [mdc 7→ mi] M map mdc to mi in φ
| φ \mdc M remove mapping for mdc

MH ::= module hierarchy (mi ⇀ md ×mi)
| [] M empty module hierarchy
| [mi 7→ (md , mi)] M maps mi to the given def. and imports
| MH1 ..MHk M composes many

a ::= administrator action
| rn . install (mdc) ; install
| rn .uninstall (m) ; uninstall
| rn . initialise (m) ; initialise

Figure 4.2: LJAM’s inner syntax, and the syntax of its administrator actions

subsection. The same subsection also presents functions for finding module definitions
within a repository hierarchy.

As shown in the previous section, LJAM also defines administrator actions. By writing
these into an active module system, the administrator can install, un-install, and initialise
module definitions, even while some underlying programs are executing. In §4.3.2, we
describe the intended semantics, and show our formal rules that precisely define it.

4.3.1 Lookup functions

LJAM’s structures for representing the program state are substantially different to those of
LJ. However, LJ’s function for finding class definitions (find cld) already encapsulates
these structures, while all the other lookup functions simply use this function. That is,
only the find cld needs to be adapted; all the other functions, e.g. the method definition
lookup function, find meth def , remain as they are in LJ.

In this subsection, we first describe, in detail, how class resolution (find cld) works
in LJAM, and show an example. Then, we explain why inheritance path lookup function,

OPERATIONAL SEMANTICS 93

find path, can remain unchanged, but its termination condition must be adapted. Fi-
nally, we present the module definition lookup function, find md, which is used within
administration actions (as shown in Fig. 4.5).

Here, we present these lookup functions according to the rules described in §1.6; ex-
amples, elaborate discussion, and suggestions for improvement are given in Chapter 5.

Finding a class definition

The statement semantics of LJ and LJAM differ only in their class resolution semantics,
i.e. finding a class definition, cld , for a class name, cl . Instead of searching a sequence
of class definitions, LJAM’s class resolution now searches class definitions in module
instances within the module hierarchy, MH . The high-level algorithm is to search (1) the
core module, (2) the imported module instances (recursively), and, finally, (3) the module
instance itself. The first appropriate class definition found is returned.

The following function implements the above algorithm. The found class definition is
returned along with the context where it was located. If no appropriate definition is found,
the function fails by returning None.

0 find cld ((RC , MH),mi.pn, fqn) : (P × ctx × fqn)→ (ctx × cld)opt =

1 match find cld in core (P , fqn) with Some ctxcld → Some ctxcld | None →
2 match MH (mi) with None → None | Some (modulemn { cldm fqn },mi)→
3 match find cld in imports (MH ,mi, fqn) with

4 Some ctxcld → Some ctxcld | None →
5 match find cld in self (cld, pn, fqn) with None → None | Some cld →
6 Some (mi .(package name (cld)), cld)

In the first stage above (line 1), we call find cld in core, the function shown below.
This function locates the core library module within the bootstrap repository, and performs
a simple search (find cld in module, shown later) through its exported class definitions.
The function package name extracts the package name from a class definition.

find cld in core ((RC ,MH), fqn) : (P × fqn)→ (ctx × cld)opt =

match RC bootstrap r with None → None | Some R →
match R with

repository r child of rn ′ {mdc ; φ } → None

| bootstrap repository {mdc ; φ } →
match find md in mds (mdc, core m) with None → None | Some mdc →
match φ mdc with None → None | Some mi →
match MH mi with None → None | Some (modulemn { cldm fqn },mi)→
match find cld in module (cld, fqn) with None → None | Some cld →
Some (mi .(package name (cld)), cld)

94 LIGHTWEIGHT JAVA MODULE SYSTEM (LJAM)

If nothing was found in the core library module, we recursively explore the imported
modules (line 3, find cld). Since the imports are searched before the importers, we are
performing a reverse depth-first search, with imports on the same level searched in the
order declared in the corresponding module file — see function below.

To respect selective exporting, a module instance (and its imports) is only searched if
the name we are searching for, fqn, is within its exported class names, fqn. The termina-
tion of the function is discussed later in this subsection.

0 find cld in imports (MH ,mi, fqn) : (MH ×mi× fqn)→ (ctx × cld)opt =

1 match mi with []→ None | mi :: mi
′ →

2 if ¬(acyclic mhMH ∧mi′ ⊆ dom (MH)) then None else

3 match MH (mi) with None → None | Some (modulemn { cldm fqn },mi′′)→
4 if fqn /∈ fqn then find cld in imports (MH ,mi

′
, fqn) else

5 match find cld in imports (MH ,mi
′′
, fqn) with

6 Some ctxcld → Some ctxcld | None →
7 match find cld in module (cld, fqn) with

8 Some cld → Some (mi .(package name (cld)), cld) | None →
9 find cld in imports (MH ,mi

′
, fqn)

When searching an imported module, i.e. not the module where the search started, the
fully-qualified name, pn.dcl , must match, and the class must be declared public:

find cld in module (cld, pn.dcl) : (cld× fqn)→ cldopt =

match cld with []→ None

| (package pn ′ ; am class dcl ′ extends cl { fd meth def }) :: cld
′ →

if ¬distinct fqns (cld) then None else

if am = public ∧ pn = pn ′ ∧ dcl = dcl ′ then Some cld else

find cld in module (cld
′
, fqn)

If the above function, find cld in module, fails to find a result in all the imported
modules searched by find cld in imports, then the final stage of the class resolution
begins — searching the module where the search started (line 5, find cld). For this
function, the fully-qualified name, pn ′.dcl , must match and ‘the class must be located in
the initial context, pn, or it must be declared public.’

find cld in self (cld, pn, pn ′.dcl) : (cld× pn × fqn)→ cldopt =

match cld with []→ None

| (package pn ′′ ; am class dcl ′ extends cl { fd meth def }) :: cld
′ →

if ¬distinct fqns (cld) then None else

if pn ′ = pn ′′ ∧ dcl = dcl ′ ∧ (pn = pn ′ ∨ am = public) then Some cld else

find cld in self (cld
′
, pn, pn ′.dcl)

OPERATIONAL SEMANTICS 95

For example, suppose we have module instances of module definitions A, B, C, D, and
the core library module, Core, all of which are connected as shown in Fig. 4.3. If we started
class resolution (find cld) in A, the module instances would get searched as indicated by
numbers in the brackets. Note that the repository boundaries are not important to class
resolution, i.e. each module instance could be stored in a different repository; the figure
only assumes that the Core module is stored within the bootstrap repository.5

Key
module instance linked to

D
(2)

Core
(1)

B
(3)

A
(5)

C
(4)

A's first import A's second import

Figure 4.3: LJAM’s class resolution order

The two functions above, find cld in module and find cld in self , both require
that the class definitions within the module have distinct fully-qualified names. A simple
reason for this is that we do not want the order of class definitions in a module to play a
role in the semantics. A somewhat more elaborate and specific reason is the following: if
we find a class in an imported module, we would like to find the same class if we started
the search in that imported module — this is later formally expressed with Lemma 15
(page 102). As shown later in §4.5, fully-qualified class name distinctness within a module
is already guaranteed by typechecking; however, since we do not have dependent types in
our formalisation, we must re-state this constraint here.

5Type checking (§4.5) ensures that the bootstrap repository contains the core library module instance.

96 LIGHTWEIGHT JAVA MODULE SYSTEM (LJAM)

Proving termination of find cld in imports

When defining Isabelle/HOL functions with non-primitive recursion, one also has to prove
their termination. We have already seen an example of this when proving termination for
LJ’s find path (§3.3.2, page 63).

In LJAM, the recursive part of its class resolution, find cld in imports, also con-
tains general recursion. Our first solution to prove the termination of this function relied on
the fact that there is only a finite number of module instances that can be explored, i.e. that
some measurable (intermediate) quantity cannot be greater than some fixed quantity based
on the size of the structure searched.

However, when proving type preservation, we have to prove that this function returns
the same class definition even if an extra module instance has been added to MH (§4.6.2).
This caused problems with our first solution, since we could no longer prove termina-
tion for a larger MH — the function failed in one case and not the other. Therefore, the
termination should not be expressed in terms of the size of MH . We later found an appro-
priate termination condition: the value that decreases is ‘the number of reachable module
instances’. This property is expressed with the following relation.

REACHABLE EMPTY

(MH , [], 0) ∈ reachable

REACHABLE CONS

MH (mi) = (md , mi)
(MH , mi, nn ′) ∈ reachable
(MH , mi2 ..mik , nn) ∈ reachable

(MH , mi mi2 ..mik , nn ′ + nn + 1) ∈ reachable

As for LJ’s find path, we have to use a definite descriptor. The value that gets smaller
with every recursive call is:

ι nn.(MH , mi, nn) ∈ reachable

To ensure that there exists a finite nn for each recursive call, we place an acyclicity
constraint on the module hierarchy. This constraint is defined as follows.

AM DEF

1.finite (dom (MH))
2.∀mi .mi ⊆ dom (MH) −→

(
∃nn . (MH , mi, nn) ∈ reachable

)
3.∀mi ∈ dom (MH) .∃md mi .MH (mi) = (md , mi) ∧ mi ⊆ dom (MH)

acyclic mhMH

Explanation. (1) The domain of MH must be finite; (2) for every subset of that domain,
there exists a finite nn that satisfies the reachable relation; and (3) all module instances
imported by any module instance in the domain of MH must also be in it.

Every module hierarchy satisfies the above property (§4.5, page 105); however, since
Isabelle/HOL does not support dependent types, we have to check for this property at the
beginning of find cld in imports (line 2 of the function, page 94).

OPERATIONAL SEMANTICS 97

Proving termination of find path

The definition of the find path function in LJAM is identical to that for LJ (§3.3.2,
page 63). The relation that guarantees its termination, however, has a definition adapted
to the new program definition (Fig. 4.2).

ACM DEF

∀pn fqn .

(
∃ctx ′ cld .find cld (P , mi.pn, fqn) = (ctx ′, cld) −→
∃nn . (P , mi.pn, fqn, nn) ∈ path length

)
acyclic cldsmiP

AC DEF

∀mi .acyclic cldsmiP

acyclic cldsP

The intuition does not change: (for every mi in program P) if we can find a class
definition for some ctx and fqn, then the corresponding inheritance path has a finite length.

Finding a module definition

When a repository, R, is required to initialise a module definition named, mn, the cor-
responding module definition, mdc, is looked up in the following way: first (recursively)
search within the parent repository of R, then perform a linear search (find md in mds)
within module definitions in R. The first matching module definition is returned.

The function below implements the above algorithm. The fourth parameter of the func-
tion, nn, stores the number of the repositories already explored, and serves to guarantee
function’s termination. If a named repository doesn’t exist, or if none of the repositories
in the chain of repositories contain an appropriate module definition, the function fails.

find md rec (RC , rn,mn,nn) : (RC × rn ×mn × nn)→ (rn ×mdc)opt =

match RC rn with None → None | Some R →
match R with

bootstrap repository {mdc ; φ } →
match find md in mds (mdc,mn) with

None → None | Some mdc → Some (rn,mdc)
| repository r child of rn ′ {mdc ; φ } →

if size (dom (RC)) ≤ nn then None else

match find md rec (RC , rn ′,mn,nn + 1) of

Some (rn ′′,mdc)→ Some (rn ′′,mdc)
| None → match find md in mds (mdc,mn) of

None → None | Some mdc → Some (rn,mdc)

98 LIGHTWEIGHT JAVA MODULE SYSTEM (LJAM)

The following function is a friendly interface to the above function.

find md (RC , rn,mn) : (RC × rn ×mn)→ (rn ×mdc)opt =

find md rec (RC , rn,mn, 0)

The recursive part of the method definition lookup function, find md rec, keeps track
of the number of repositories already explored. If this number exceeds the number of
repositories in the system, there must be a cycle, so the function terminates. Therefore,
with each recursive call, we decrease ‘the number of repositories we can still explore’ —
this measure makes the function well-founded. It would be better to prevent these cycles
through the well-formedness rules.

4.3.2 Administrator actions

A system administrator can write administrator actions, a, into the system at any point
during normal execution. If execution of an administrator action fails, any partial effects
are reverted. These commands can install, un-install, or initialise a module definition.

The draft documents describe that the install and un-install actions only make a module
definition visible and invisible to the initialisation procedure, respectively, i.e. they do not
interfere with the normal execution of a program. The initialisation action, on the other
hand, recursively initialises all the (recursively) imported module definitions. If any of the
definitions was initialised before, their existing module instances are reused.

Since every module instance must bind against the module instances of its imports,
the initialisation action, ‘rn . initialise (m) ;’, must return a module instance identifier,
mi , for each imported module instance. The module hierarchy, MH , then stores the bind-
ing. To store this intermediate result in a way that preserves the syntactic consistency for
the reduction statements, we use internal variants of administration actions, ia. While
the syntax of internal actions for installing and un-installing is the same, the syntax for
initialisation is ‘mi = rn .get instance (m)’:

ia ::= internal action
| rn . install (mdc) install
| rn .uninstall (m) uninstall
| mi = rn .get instance (m) initialise

The reduction of an administration action, ‘config
a−→ config ′’, is then defined in terms

of the reduction of internal administrator actions, ‘config
ia−−→ config ′’ — see Fig. 4.4.

Using our program structures (§4.2.4) and the draft natural language description of the
semantics of the administration actions, we wrote semantic rules (shown in Fig. 4.5) that
precisely define the internal semantics of these actions. Each of the following paragraphs
in this subsection describes one of the rules.

OPERATIONAL SEMANTICS 99

ADMIN INSTALL

((RC , MH), L, H , sl
l)

rn . install (mdc)−−−−−−−−−−→ ((RC ′, MH), L, H , sl
l)

((RC , MH), L, H , sl
l)

rn . install (mdc) ;−−−−−−−−−−−→ ((RC ′, MH), L, H , sl
l)

ADMIN UNINSTALL

((RC , MH), L, H , sl
l)

rn .uninstall (m)−−−−−−−−−−−→ ((RC ′, MH), L, H , sl
l)

((RC , MH), L, H , sl
l)

rn .uninstall (m) ;−−−−−−−−−−−→ ((RC ′, MH), L, H , sl
l)

ADMIN NEW INSTANCE

((RC , MH), L, H , sl
l)

mi=rn1 .get instance (m)−−−−−−−−−−−−−−−−→ ((RC ′, MH ′), L, H , sl
l)

((RC , MH), L, H , sl
l)

rn1 . initialise (m) ;−−−−−−−−−−−−→ ((RC ′, MH ′), L, H , sl
l)

Figure 4.4: LJAM’s operational semantics for administrator actions

The installation action, ‘rn . install (mdc)’, (1) looks up the repository named rn, R,
(2) inspects the body of R, (3-5) checks that the name (which cannot be core m) of the
given module definition, mdc, is distinct,6 (6) adds mdc to R, creating R′, and (7) re-maps
rn to R′. The functions R body and R update extract and update the contents of a
repository, respectively, while md name extracts the name of a given module definition.

The un-installation action, ‘rn .uninstall (m)’, (1) looks up the repository named rn,
R, (2) inspects the body of R, (3-4) locates and removes the module definition named m

(cannot be core m), mdc, (5) removes any mapping for mdc in repository cache, φ, and
updates R accordingly, creating R′, and (6) re-maps rn to R′. We explain why this and
other actions are safe to execute in §4.6. The function mds rm removes any occurrence
of the given module definition from the given list.

The initialisation action, ‘mi = rn1 .get instance (m)’, is defined with two rules.
The first describes what the action does if the appropriate module instance already exists.
The action (1) starts the search in the repository named rn1, finds a module definition
named m,mdc, within repository named rn2, (2-3) inspects the contents of this repository,
and (4) finds that mi points to an existing instance of mdc, and returns it.

If an appropriate module instance does not exist yet, the system (1-3) takes a few steps
as before, (4) finds that the repository cache has no mapping for mdc, (5) inspects the
contents ofmdc, (6) recursively creates module instances (pointed to by) mik

k of imported
module definitions named mk

k , resulting in program state ‘(RC ′, MH ′)’, (7) finds a fresh
module instance identifier, mi , (8) creates md , a module instance of mdc, (9) maps mi to
md and mik

k in MH ′, producing MH ′′, (10-11) finds repository named rn2 and inspects
its contents, (12) maps mdc to mi in the cache of R′2, producing R′′2 , (13) re-maps rn2 to
R′′2 , and (14) typechecks md in the final context.

6φ could be a map from module names, since (3-5) guarantee presence of modules with distinct names.

100 LIGHTWEIGHT JAVA MODULE SYSTEM (LJAM)

R INSTALL

1.RC (rn) = R 2.R body (R) = (mdck
k
, φ)

3.md name (mdc) = m

4.md name (mdck) = mnk

k
5.m /∈ mnk

k

6.R update (R, mdcmdck
k
, φ) = R′

7.RC ′ = RC [rn 7→ R′]

((RC , MH), L, H , sl
l)

rn . install (mdc)−−−−−−−−−−→ ((RC ′, MH), L, H , sl
l)

R UNINSTALL

1.RC (rn) = R 2.R body (R) = (mdc1, φ)

3.find md in mds (mdc1, m) = mdc

4.mds rm (mdc1, md
c) = mdc2

5.R update (R, mdc2, φ \mdc) = R′

6.RC ′ = RC [rn 7→ R′]

((RC , MH), L, H , sl
l)

rn .uninstall (m)−−−−−−−−−−−→ ((RC ′, MH), L, H , sl
l)

R EXISTING INSTANCE

1.find md (RC , rn1, m) = (rn2, md
c) 2.RC (rn2) = R2

3.R body (R2) = (mdc2, φ2) 4. φ2 (mdc) = mi

((RC , MH), L, H , sl
l)

mi=rn1 .get instance (m)−−−−−−−−−−−−−−−−→ ((RC , MH), L, H , sl
l)

R NEW INSTANCE

1.find md (RC , rn1, m) = (rn2, md
c) 2.RC (rn2) = R2

3.R body (R2) = (mdc2, φ2) 4. φ2 (mdc) = null

5.mdc = module m { cldc mk
k fqn }

6. ((RC , MH), L, H , sl
l)

mik=rn2 .get instance (mk)
k

−−−−−−−−−−−−−−−−−−→ ((RC ′, MH ′), L, H , sl
l)

7.mi /∈ dom (MH ′) 8. `mi md
c md

9.MH ′′ = MH ′ [mi 7→ (md , mik
k
)] 10.RC ′ (rn2) = R′2

11.R body (R′2) = (mdc3, φ3)

12.R update (R′2, md
c
3, φ3 [mdc 7→ mi]) = R′′2

13.RC ′′ = RC ′ [rn2 7→ R′′2] 14. (RC ′′, MH ′′) `mi md

((RC , MH), L, H , sl
l)

mi=rn1 .get instance (m)−−−−−−−−−−−−−−−−→ ((RC ′′, MH ′′), L, H , sl
l)

Figure 4.5: LJAM’s operational semantics for internal administrator actions

4.3.3 Context insertion

Step (8) of the initialisation action (R NEW INSTANCE, Fig. 4.5) creates a module in-
stance, md , of module definition mdc by creating a copy of mdc, and recursively inserting
(together with an appropriate package name) the module instance identifier of md , i.e. mi ,
into every object creation statement. In particular, a statement ‘var = new cl ();’ within
a package, pn, becomes ‘var = newmi.pncl();’. This allows type-checking and statement

TYPE SYSTEM 101

reduction to start searching for class definitions within appropriate contexts. Due to the
simplicity of the context insertion rules, we put them in the appendix (§C.3, page 175).

4.4 Type system

The type system changes from LJ to LJAM due to a different definition for a context,
ctx . Most of this change is hidden within the new definition of a type, τ ; however, the
subtyping relation and the lemmas based on it change a little, too.

4.4.1 Type (τ)

The definition of a type is syntactically identical to that of LJ’s type (page 68): Object, or
ctx.dcl . The definition of the context, however, has changed from empty in LJ (page 60)
to a tuple of module instance identifier and package name in LJAM (page 89), e.g. mi.pn.

When looking up a class definition for a particular type, LJ’s lookup functions (§3.3.2)
do not change the context or the class name they are searching for. This means that a class
definition in LJ has only one way of referring to it. For example, a class named dcl in a
context ctx has a single valid class reference (type): ctx.dcl .

LJAM’s lookup functions (§4.3.1), however, search different packages and module
instances, and so do change the context in which they search. Because of this, a class
definition in LJAM can have more than a single way of referring to it. For example, if a
module instance named mi imports another module instance named mi ′, and (only) mi ′

contains a class definition with a fully-qualified name pn.dcl , then both mi.pn.dcl and
mi ′.pn.dcl are valid class identifiers (types) for the class definition.

We refer to the type that directly specifies the context and the name of the referred
class as the primary type. Each class definition in the system has exactly one primary
type. Note that in LJ every valid type is also a primary type. To obtain a primary type
from a valid type in LJAM, we have to first look up the class definition for that valid type,
then extract the primary type from it.

4.4.2 Subtyping (P ` τ≺ τ ′)

The subtyping relation is similar to that of LJ (§3.4.3, page 69). The rule STY OBJ remains
unchanged, while STY DCL contains a subtle change.

STY OBJ

1.find path (P , τ) = ctxcld

P ` τ≺ Object

STY DCL

1.find path (P , τ) = ctxcld

2. find cld (P , mi ′.pn ′, pn ′.dcl ′) = ctxcld

3. ctxcld ∈ ctxcld
P ` τ≺ mi ′.pn ′.dcl ′

102 LIGHTWEIGHT JAVA MODULE SYSTEM (LJAM)

The find path function (page 63) returns a list of tuples of contexts and class defini-
tions, which is (for purposes of typing) equivalent to a list of primary types. LJ’s STY DCL

then simply checks that the given supertype is within those primary types — this is fine,
because in LJ every valid type is a primary type. Since this is not the case in LJAM, LJ’s
subtyping relation would give us only a small subset of all the required subtype pairs.

Using the find cld function (§4.3.1, page 93) on the given supertype returns the cor-
responding class definition and its context, ctxcld , which are (for purposes of typing) its
primary type. The third line then simply checks that this primary type is within the primary
types of the inheritance path of the subtype.

Lemma 1 (Subtype is a valid type), Lemma 2 (Inheritance sub-path), and Lemma 3
(Supertype is a valid type) remain unchanged, except for class name being replaced with
full name to account for the package name. Their proofs required only minor updates.

4.4.3 Type reflexivity

To prove type reflexivity, we need the following lemma.

Lemma 13 (Subtype first).
find path (P , ctx , fqn) = Some ctxcld

=⇒ ∃ctxcld . find cld (P , ctx , fqn) = Some ctxcld ∧
(∃ctxcld′. ctxcld = ctxcld :: ctxcld

′
)

Explanation. If we look up an inheritance path for a class, then the head of that path is the
class of which inheritance path we searched for.

Proof. By well-founded induction over find path rec (§3.3.2, page 63).

Lemma 14 (Type reflexivity). P ` τ =⇒ P ` τ≺ τ

Proof. LJ’s proof (of Lemma 4, page 71) is adapted to use the above lemma, which ac-
counts for the changes to the subtyping relation.

4.4.4 Type transitivity

The proof of LJAM’s type transitivity is substantially more complex than that of LJ
(page 71). This is mainly because Lemma 2 (page 70) used in LJ’s lemma deals only
with primary types. We need a few more lemmas, three of which we present here.

Lemma 15 (Target context equivalence for class lookups).
find cld (P , ctx , fqn) = Some (ctx ′, cld ′) =⇒
find cld (P , ctx ′, fqn) = Some (ctx ′, cld ′)

Explanation. If we look for a class named fqn in context ctx , and we find a class definition
cld ′ in context ctx ′, then we will get the same result if we start the search in ctx ′ instead.

TYPE CHECKING 103

Proof. By comparing symbolic executions of the two lookups down to every detail of
all the dependent lookup functions (definitions of these are shown in §4.3.1). The proof
includes a well-founded induction on find cld in imports (§4.3.1, page 94).

Lemma 16 (Inheritance path consistency).

find path (P , ctx , cl) = Some ctxcld ∧ (ctx ′, cld ′) ∈ ctxcld
=⇒ find cld (P , ctx ′, (full name (cld ′))) = Some (ctx ′, cld ′)

Explanation. Taking any class definition (and its context) from an inheritance path, and
looking up a class definition with the corresponding primary type, gives the original class
definition (and context).

Proof. By well-founded induction over find path rec (§3.3.2, page 63), using also lem-
mas about context equivalence such as Lemma 15. The proof has the same structure as
the one for Lemma 2 (page 70).

Lemma 17 (Target context equivalence for paths lookups).

find path (P , ctx , cl) = Some ((ctx ′, cld ′) :: ctxcld) =⇒
find path (P , ctx ′, (full name (cld ′))) = Some ((ctx ′, cld ′) :: ctxcld)

Explanation. Looking up the inheritance path with a primary type corresponding to the
head of an existing inheritance path will give the same result.

Proof. With a well-founded induction over find path rec, and Lemma 16.

Lemma 18 (Type transitivity). P ` τ≺ τ ′ ∧ P ` τ ′≺ τ ′′ =⇒ P ` τ≺ τ ′′

Proof. We know that the valid (but not necessarily primary) types τ ′ and τ ′′ have cor-
responding class definitions within inheritance paths of τ and τ ′, respectively. Using the
definition of the subtype relation (§4.4.2, page 101) and a single application of Lemma 2
(page 70), we are left with proving that the inheritance paths of τ ′ and its primary type,
τ ′p , are the same. With Lemma 13, we split the inheritance path into its head and tail.
With Lemma 16, we show that we find the same class definition for both τ ′ and τ ′p . Fi-
nally, Lemma 17 allows us to combine the inheritance path lookup for τ ′, and the class
definition lookup for τ ′p , to get the same inheritance path for τ ′p .

4.5 Type checking

Much of LJ’s type checking is reused in LJAM. Specifically, the well-formedness of state-
ments, variable state, and heap is identical. The main changes are due to the different
definition of the program structure.

104 LIGHTWEIGHT JAVA MODULE SYSTEM (LJAM)

Program (` P)

A program, P , is well-formed iff its repository context, RC , and module hierarchy, MH ,
are well-formed, and there are no cycles in the class inheritance graph (§4.3.1, page 97).

1.MH ` RC

2.RC ` MH

3. acyclic clds (RC , MH)

` (RC , MH)
WF P

Repository context (MH ` RC)

A repository hierarchy, RC , is well-formed iff all repositories in RC are properly mapped
and well-formed, and RC includes a bootstrap repository. The function R name extracts
the name of a given repository.

1.∀rn ∈ dom (RC) . ∃R .

(
RC (rn) = R ∧ R name (R) = rn ∧
(RC , MH) ` R

)
2.bootstrap r ∈ dom (RC)

MH ` RC
WF RC

Repository (P ` R)

A repository is well-formed when its repository cache, φ, is well-formed. A bootstrap
repository must also contain a core module definition, whereas a normal repository must
specify a valid parent repository.

1.find md in mds (mdc, core m) = mdc

2.MH ` φ

(RC , MH) ` bootstrap repository {mdc ; φ }
WF BOOTSTRAP REP

1. r 6= rn 2. rn ∈ dom (RC)

3.MH ` φ

(RC , MH) ` repository r child of rn {mdc ; φ }
WF NORMAL REP

Repository cache (MH ` φ)

A repository cache, φ, is well-formed iff all of its module instances identifiers are within
the program’s module hierarchy, MH . Since there are strict requirements on the domain
of MH (below), the following rule is not as weak as it might appear.

1. ran (φ) ⊆ dom (MH)

MH ` φ
WF RMIS

TYPE CHECKING 105

Module hierarchy (RC ` MH)

A module hierarchy, MH , is well-formed iff its import graph is acyclic (§4.3.1, page 96),
and all module instance identifiers are mapped to well-formed module instances.

WF MH

1. acyclic mh MH

2.∀mi ∈ dom (MH) .∃md mi .MH (mi) = (md , mi) ∧ (RC , MH) `mi md

RC ` MH

Module instance (P `mi md)

The module instance, md , is an instance of some module definition, mdc, which has been
annotated with its own module instance identifier, mi . After context insertion (§4.3.3), the
instance is inserted into the module hierarchy, and linked to other instances. At this point,
the lookup functions can be used, both for type checking and for execution of md .

Therefore, a module instance, md (named mi), is well-formed iff its class definitions
are well-formed, their names are distinct, and their inheritance paths are finite. Note that
class definitions are well-formed with respect to mi , i.e. mi is the context in which all
type references within the class definitions are resolved. All classes within md must also
have finite inheritance paths to guarantee termination of the lookup functions.

1. full name (cldk) = fqnk

k

2.distinct (fqnk
k
)

3.P `mi cldk
k

4. acyclic cldsmiP

P `mi module mn { cldk
k
m fqn }

WF MODULE

Please note that, due to Ott naming rules (§1.6.1, page 38), ‘fqnk
k
’ and ‘fqn’ refer to

distinct lists of fully-qualified names.

Class (P `mi cld)

This rule simply refers to LJ’s rule for common class well-formedness (page 74) — the
rule for class definition well-formedness, and all the rules used within, are identical to
those in LJ. The semantics of these rules changes only due to modified lookup functions.

1.P `
mi.pn

(dcl , cl , fd ,meth def)

P `
mi

package pn ; am class dcl extends cl { fd meth def }
WF CLASS

106 LIGHTWEIGHT JAVA MODULE SYSTEM (LJAM)

4.6 Proof of type soundness

LJAM’s configuration has the same well-formedness conditions as that of LJ (§3.6.1,
page 77), i.e. that its program, P , variable state, L, heap, H , and statements to be ex-
ecuted, sk

k , must all be well-formed. We again prove type soundness by proving progress
and type preservation. Like all other in this document, the following proofs are the natural
language versions of our Isabelle/HOL proofs.

4.6.1 Progress

Since administrator actions can be performed at any point in the execution, and since all
partial effects of a failed action are reverted (§4.3.2), reduction of administrator actions
does not appear in the progress theorem. For this reason, the progress property is identical
to the one for LJ.

Theorem 19 (Progress).

Γ ` (P ,L,H , s) ∧ s 6= [] =⇒ ∃config. (P ,L,H , s) −→ config

Proof. The proof of progress for LJ (§3.6.3, page 79) directly depends on the statement
reduction, the type system, some well-formedness rules (statement, variable state, and
heap), some lookup functions, find type and find meth def , and some helper lemmas.
These helper lemmas were adapted according to the small changes in the type system
(§4.4), while all the other (direct) dependencies have identical definitions in LJ and LJAM.

Both of the mentioned lookup functions indirectly depend on the function defining the
class resolution, find cld, which has a substantially different definition in LJ and LJAM.
However, the progress proof is, in fact, independent from the implementation of find cld.
We are required to know only that the function returns a valid result in certain cases, all of
which are guaranteed by the well-formedness rules, i.e. if a the program typechecks, these
function calls must have succeeded, and will do so at runtime, too.

Due to a more complex program structure, LJAM has a different definition for the
context, ctx . This definition is used within the subtyping relation, and find cld. The
adapted lemmas encapsulate concrete uses of ctx within the subtyping relation; while, as
mentioned above, LJ’s progress proof is invariant of the implementation of find cld.

Because of all of the above reasons, LJAM’s progress proof is identical to the one for
LJ, modulo small updates to the proofs of a few helper lemmas (as outlined in the pre-
vious sections). Since our Isabelle/HOL scripts respect the above-mentioned abstraction
boundaries, we also achieve a high reuse of the Isabelle/HOL proof scripts (§6.6).

PROOF OF TYPE SOUNDNESS 107

4.6.2 Type preservation

The proof of LJAM’s type preservation is more complex than that of LJ, since it must also
deal with the complexities of LJAM’s class resolution, and ensure the well-formedness
preservation of the administrator action reductions.

Theorem 20 (Type preservation).

Γ ` config ∧ (config −→ config ′ ∨ config
a−→ config ′)

=⇒ ∃Γ′. Γ ⊆m Γ′ ∧ Γ′ ` config ′

Explanation. If config is a well-formed configuration in a type environment, Γ, and config

reduces in one step to config ′ through either statement reduction, −→, or administrator
action reduction, a−→, config ′ is well-formed in some greater (⊆m) type environment, Γ′.

Proof. First, we consider the case where a statement reduction, −→, has occurred. As for
the progress proof, this part can be identical to the one for LJ (modulo small updates to
the proofs of a few helper lemmas), since most dependencies have the same definitions.

The administrator action reduction, a−→, case is more complicated. Intuitively, the
proof goes as follows. The installation and the un-installation of a module definition
(R INSTALL and R UNINSTALL, Fig. 4.5, page 100) are safe, since they only modify (in
a well-formed way) a repository in the repository context, RC , which cannot affect cur-
rently executing code: the statement semantics only uses the module hierarchy part of the
program, except when locating the core library module, which the administration actions,
by definition, cannot modify. The initialisation action (R NEW INSTANCE), recursively
creates instances of module definitions, which are all typechecked before made available
to the statement execution semantics; the action also updates (in a well-formed way) the
repository caches.

We start by defining a well-formed program change. The judgement ‘(P , mi , P ′) ∈
wf P change’, defined in Fig. 4.6,7 states that an administrator action has successfully
executed, changing the program state from P to P ′. The mi is an identifier of a module in-
stance, which might exist in P ′ due to the reduction of the administrator action associated
with this program change, but is otherwise free in P . This relation closely corresponds to
the semantics of administrator actions (Fig. 4.5, page 100), but abstracts away from details
unrelated to program well-formedness. Since it applies to any administration action, the
relation allows easy reuse of helper lemmas that do not depend on a specific action.

For each of the LJAM’s lookup functions we then prove that searching within P ′ (start-
ing in some ctx) gives the same result as searching within P (starting in the same ctx) if
ctx is not mi . We also prove that if searching within P (starting in some ctx) gives a

7The relation was originally written within Isabelle/HOL. Later, we re-wrote it Ott, added it to LJAM’s
definition, and so also obtained a version that has its LATEX consistent with the other LJAM rules.

108 LIGHTWEIGHT JAVA MODULE SYSTEM (LJAM)

WRC INSTALL

1. ` (RC , MH) 2.mi /∈ dom (MH)

3.RC (rn) = R 4.R body (R) = (mdc, φ)
5.md name (mdc) = m

6.R update (R, mdc #mdc, φ) = R′

((RC , MH), mi , (RC [rn 7→ R′], MH)) ∈ wf P change
WRC UNINSTALL

1. ` (RC , MH) 2.mi /∈ dom (MH)

3.RC (rn) = R 4.R body (R) = (mdc1, φ)

5.find md in mds (mdc1, m) = mdc

6.mds rm (mdc1, md
c) = mdc2

7.R update (R, mdc2, φ \mdc) = R′

((RC , MH), mi , (RC [rn 7→ R′], MH)) ∈ wf P change
WRC NEW INSTANCE

1. ` (RC , MH) 2.mi /∈ dom (MH)
3.RC (rn) = R

4.R body (R) = (mdc, φ)
5.mi ⊆ dom (MH)
6.md name (mdc) = m

7.R update (R, mdc, φ [mdc 7→ mi]) = R′

8.RC ′ = RC [rn 7→ R′]
9.MH ′ = MH [mi 7→ (md , mi)]
10. (RC ′, MH ′) `mi md

((RC , MH), mi , (RC ′, MH ′)) ∈ wf P change

Figure 4.6: LJAM’s well-formed program change

result (not None), then searching within P ′ (starting in the same ctx) gives the same res-
ult, regardless of ctx . Both steps are non-trivial, especially for functions that use general
recursion, e.g. find path rec (page 62).

Using the above result, we then prove that all well-formedness relations are preserved
through a well-formed program change. For example, we prove that if a statement s is
well-formed in P , it is also well-formed in P ′, where ‘(P ,mi ,P ′) ∈ wf P change’.

Finally, we induct on the definition of the reduction for administrator actions. We show
for each action that it satisfies the well-formed program change, which allows us to use
all the above-mentioned lemmas. For R NEW INSTANCE (page 100), the well-formedness
of the final state relies on the presence of the imported module instances, mik

k , within an
intermediate module hierarchy, MH ′ — therefore, the induction hypothesis must include
a statement saying “if a module initialisation action, ‘mi = rn .get instance (m)’, ex-
ecutes successfully, mi is bound in the resulting module hierarchy.” With this, we can
then show that each administrator action preserves configuration well-formedness.

RECENT CHANGES TO THE JAVA MODULE SYSTEM 109

4.7 Recent changes to the Java Module System

At the time of this writing, the Java Module System was still in development, and the
draft documents describing its design were being continually updated. Our formalisation
is based on a snapshot [51, 52] in this process. This section tries to describe the changes
made to the draft design after this snapshot, which are inconsistent with our formalisation,
or our description of the documents themselves:

• JSR-294 has merged into JSR-277;

• keyword superpackage has been replaced with module;

• a source-level entity (class, interface, etc.) annotated with the keyword public is
now implicitly exported by any module it is a member of;

• a new entity-accessibility keyword, module, has been introduced, which takes on
the previous meaning of public, i.e. visible to all other members in the module;

• accessibility constraints for module members are no longer expressed within a mod-
ule file, i.e. the list of exports has become purely implicit.

It is not clear how forward bytecode-compatibility is preserved through the introduc-
tion of the new keyword. Our guess is that, with respect to the Java’s functions checking
for accessibility, the keyword is bit-wise compatible with public. We do know, however,
that the keyword is context sensitive, i.e. one can still declare a variable named ‘module.’

We are not aware of any other incompatible changes. All of the above change only
the surface of the module system, which means that our formalisation is still an accurate
model for the system’s semantics.

4.8 Conclusion

We now have a rigorous definition of a core of the Java Module System with theoretical
confidence in its type soundness, which tells us that the system “will not go wrong” ac-
cording to the semantics; however, it does not tell us that its semantics is what we intend
it to be, or that it is useful.

In Chapter 7, we write a proof-of-concept implementation that closely corresponds to
the semantics specified in LJAM. The examples shown in the draft documents run in our
implementation as intended. This gives us some confidence that our formalisation does,
in fact, reflect the draft documents.

With its formalisation in hand, we are able to precisely analyse and discuss possible
deficiencies of the module system. The next chapter reveals two key weaknesses — we
hope that both of these will be addressed appropriately before the final release of JMS.

5
Problems with the Java Module System

In this chapter, we identify and analyse Java Module System’s two key problems: unin-
tuitive and insufficiently expressive class resolution, and inflexible module instantiation.
For each, we show what they are, the reasons for corresponding design choices, their
implications in practice, and how they can be fixed.

5.1 Class resolution

The first key problem with the module system concerns its definition of class resolution.
The procedure (recursively) searches the imported module definitions (following the order
specified in the module file) before searching the client module. This is done in order to
(1) prevent anyone from overriding the core library classes, since the core module (Java’s
core library classes) is logically the root of the import graph, and therefore looked up first,
(2) to minimise ClassCastExceptions, and (3) to promote the sharing of static data
and types. The latter two are achieved by preferring a class that is more accessible to
the whole system; therefore, it is more likely that identical class references in different
contexts refer to the same class definition.

A ClassCastException is thrown when an object is cast to an inappropriate type.
For example, an object of type T is sent as an Object from module instance A to module
instance B, where it is cast back to “T”, but “T” in the new context, B, resolves to a dif-
ferent class definition; therefore, an exception is thrown. If the resolution algorithm tends

112 PROBLEMS WITH THE JAVA MODULE SYSTEM

to resolve to definitions towards the root of the module import graph, then A’s “T” and
B’s “T” likely point to the same T, avoiding ClassCastExceptions when exchanging
objects of type T — in §5.3, we further discuss the prevention of such exceptions.

The above-described name resolution order does, however, have two deficiencies.
First, the name resolution is highly unintuitive in practice (§5.1.1). And second, it is
impossible to access all visible types (§5.1.2).

5.1.1 Unintuitive class resolution

Problem Suppose, for example, that the developers of a module, XMLParser, release
an update, which makes some new functionality available through a new (and exported)
class, ParserX. Since the new XMLParser module is compatible with the old one, the
developers only modify its micro version number, which implies that the modules that
previously imported the old version will now likely import the new version, automatically
(due to commonly-used flexible version constraints). However, if an importing module,
e.g. XSLT, already contained a class named “ParserX”, then any reference to a class
ParserX in XSLT will now incorrectly resolve to ParserX in XMLParser. The resol-
ution problem is shown in Fig. 5.1.

Key
importsmodule definition

resolves topublic class

XMLParser (exports:
ParserX)

ParserX

̏ParserX ̋

XSLT
̏ParserX ̋

ParserX

Figure 5.1: LJAM’s unintuitive and inexpressive class resolution

One might argue that due to Java’s class naming conventions, i.e. always prefixing
its package name with a reversed domain name of the company that wrote the class, the
above scenario is unlikely. However, such a scenario can easily appear if the two module
definitions are written within the same company, and the developers of the module defin-
itions genuinely want to use different versions of ParserX, respectively. Furthermore,
the reason for these naming conventions is Java’s lack of namespace control.

Furthermore, due to the JMS’s oversimplified relation between modules, the import-
ing module has no control over which exported classes of the imported modules are vis-
ible. This ultimately means that a class within XSLT has no way of referring to XSLT’s

CLASS RESOLUTION 113

ParserX in the example shown in Fig. 5.1 without module-wide renaming.
Any change to the underlying language is highly undesirable due to various compat-

ibility issues. Because of this, we cannot introduce proper namespaces to the source lan-
guage, which would allow class references independent of the class resolution semantics,
e.g. XMLParser::ParserX.

Solution We adapt the class resolution algorithm to search the core library module, then
the module itself, and finally the imported modules (recursively) — the resolution in the
above example according to the new algorithm is shown in Fig. 5.2.

Key
importsmodule definition

resolves topublic class

XMLParser (exports:
ParserX)

ParserX

̏ParserX ̋

XSLT
̏ParserX ̋

ParserX

Figure 5.2: A more intuitive, but still inexpressive, class resolution

If a new version of an imported module, e.g. XMLParser, now exports an extra name,
e.g. ParserX, which is already bound in the client module, no names will get re-bound.
That is, the semantics is now robust against incremental interface evolution of the imported
modules. On the other hand, if a name is bound locally when it should be bound in an
imported module, the fix is module-local — by removing/renaming the local definition.

Note that the new algorithm still protects the core library (by searching it first). The
down side is that more scenarios result in ClassCastExceptions being thrown, since
resolution no longer prefers definitions towards the root of the module import graph;
however, we can avoid such exceptions by following a simple rule: “if sharing objects
through a common import, make sure that only that module declares the types of the ob-
jects shared.”

5.1.2 Inexpressive class resolution

Problem Even with the modified resolution algorithm (§5.1.1), developers remain un-
able to choose between alternative bindings for a particular fully-qualified name. For ex-
ample, with the original algorithm, a class within XSLT cannot refer to XSLT’s ParserX,
while with the modified algorithm, the same class cannot refer to XMLParser’s ParserX.

114 PROBLEMS WITH THE JAVA MODULE SYSTEM

We would like to guarantee, without changing the underlying language, that the pro-
grammer can always choose which class of the available alternatives he wants to use.

Solution Add support for renaming of exports by importers. Since the source code
within the importer will not be “aware” of the renaming, we refer to this type of renaming
more specifically as module-boundary renaming.

With this feature, developers can now import XMLParser’s ParserX under a dif-
ferent name, e.g. ImportedParser. Therefore, a class in XSLT can now access both
ParserXs, something not possible before. The resulting resolution semantics is shown
in Fig. 5.3, and the actual code change required in the XSLT’s module file is:

import XMLParser with ParserX as ImportedParser;

Key
importsmodule definition

resolves topublic class

XMLParser (exports:
ParserX)

ParserX

̏ParserX ̋

XSLT
̏ParserX ̋

ParserX

̏ImportedParser ̋

ParserX as ImportedParser

Figure 5.3: Adapted class resolution with module-boundary renaming

Note that switching between name bindings, as well as making the otherwise hidden
bindings accessible, is now possible with simple, module-local operations — no module-
wise refactoring, or modifying of imported modules, is required.

Now, suppose that XSLT needs to use ParserX from version 2.0 of XMLParser, and
ParserX from version 3.0 of XMLParser. Such a scenario was impossible to express
with previous semantics. With the adapted semantics, however, the solution is simple, as
shown in Fig. 5.4.

The Java Module System already supports selective exporting, i.e. leaking only a part
of the interface. It does not support selective importing, i.e. allowing developers to import
a subset of the exported classes coming from the imported modules (in order to bind to
a local class instead). Selective importing would make the module system robust against
incremental interface evolution of imported modules, which we achieved with an adapted
class resolution. However, selective importing would not allow the scenario in Fig. 5.3 nor
the one in Fig. 5.4, both of which are possible through module-boundary renaming.1

1Module-boundary renaming can be simulated in an ad-hoc manner with an intermediate module in the

INFLEXIBLE MODULE INSTANTIATION 115

Key
importsmodule definition

resolves topublic class

XSLT

̏NewParser ̋

̏OldParser ̋

ParserX as OldParser

XMLParser<3.0>
(exports: ParserX)

ParserX

̏ParserX ̋

XMLParser<2.0>
(exports: ParserX)

ParserX

̏ParserX ̋

ParserX as NewParser

Figure 5.4: Accessing two different versions from a single context

5.2 Inflexible module instantiation

Problem In JMS, each module definition can only have a single module instance, i.e. its
module generators are applicative even across applications. This means that all clients
necessarily have to share the module’s static data and types, which is often considered
desirable, because it saves space, and again prevents some ClassCastExceptions by
forcing fewer definitions a type reference can resolve to.

However, suppose that XSLT and ServletEngine depend on XMLParser (our original
example, Figure 1.2, page 27). Furthermore, suppose that XSLT and ServletEngine (i) rely
on conflicting invariants of the internal state of XMLParser, or (ii) must run concurrently
to achieve a high throughput, but XMLParser does not guarantee correct operation in such
a concurrent environment.

With the existing proposal, the only solution available to us in case (i) is to make the
two invariants somehow compatible. In case (ii), we need to rewrite XMLParser’s code
(assuming we have access) to add sufficient locking to handle concurrent accesses from
multiple users. Both alternatives are often time-consuming and error-prone tasks, but are
necessary if XSLT and ServletEngine have to share data or types through XMLParser.

Solution The sharing of data or types through a common import is infrequent, espe-
cially across different programs. In many such cases, we can replicate the common import
as required. This way the users can maintain conflicting invariants on separate instances

import hierarchy, which extends (but adds no state or functionality) and exports the imported class. Each
such hack therefore introduces a dummy “link class” in the class hierarchy for each renaming.

116 PROBLEMS WITH THE JAVA MODULE SYSTEM

of the module definition, since they use independent static data. We can also avoid un-
needed contention in the imported module definition, allowing all importers to execute
static methods in parallel without worrying about breaking each other’s invariants.

The fundamental point here is that we should give module developers a choice of
whether they want a shared or a new instance of an imported module. We achieve this
by allowing small annotations on the import statements within module files, as well as on
modules themselves.

Here, we give an informal overview of the alternatives that allow expressing a wide
variety of sharing scenarios. First, we look at the annotations for the import statements.2

IMPORT OPTION SHORT DESCRIPTION

import m Uses the Java Module System’s sharing policy.
(Can be overridden by replicating.)

import shared m (explicitly) Requests a shared instance of m.
import own m Requests a separate instance of m.
import m as amn Requests an instance, which is shared under name amn.

The difference between the first two options is subtle, but important, and will be ex-
plained later. The common semantics of both is to request a shared instance of a particular
module definition. In the third case, the client module is requesting an instance of the
imported module definition just for itself. In the last case, a module instance is created
under a name, amn: if another module imports the module definition (named m) as amn,
then they share the same instance. The last option is here to cover the general case.3

However, there are cases where the developer would want to specify module’s own
replicating policy. If they know that a module is not concurrency-safe, then they would
tag it with replicating, and so prevent automated sharing; if they wanted to track some
system-wide information, they would tag it with singleton, and so force sharing.

ANNOTATION SHORT DESCRIPTION

(no annotation) Instantiation depends solely on the importer’s policy.
replicating Default import of this module results in a new instance.
singleton Always shares a single instance (ignores importer’s policy).

Next, we define how the different annotations interact. The intended meaning of the
‘replicating’ flag is “use this module as shared at your own risk,” while the meaning of
the ‘singleton’ flag is “this module only makes sense if there is a single instance of it.”
From this, we decided that ‘replicating’ can be overridden by the client module, whereas

2Keywords are introduced for the sake of clarity. A real system might use different syntax.
3In fact, the last option can simulate the shared and the own cases: the former by always choosing a

pre-defined constant for amn , and the latter by choosing a unique value for amn .

INFLEXIBLE MODULE INSTANTIATION 117

‘singleton’ cannot. A more expressive approach would allow custom annotations, where
the developer would specify the override direction.

We effectively have three different types of dependency between the importing and the
imported superpackage: shared, own, and as. The following table summarises the above-
described interaction between different annotations, and shows how we put the intended
semantics before safety in a concurrent environment.

IMPORTED

default replicating singleton

IM
P

O
R

T
IN

G default shared own

shared
shared shared
own own
as as

Therefore, if XSLT and ServletEngine required the same version of XMLParser, but
had incompatible invariants on XMLParser’s static data, and/or wanted to run safely and
efficiently in parallel, then either (or both) would add own to the import statement:

module XSLT { module ServletEngine {

. . . import own XMLParser; import own XMLParser; . . .

} }

On the other hand, if the developer of XMLParser knows that the module is not con-
currency safe and/or has a flexible invariant, he can annotate its source as follows:

replicating module XMLParser { . . . }

In both of the above cases, we end up with the module instances as shown in Fig. 5.5.

XSLT ServletEngine

Key
importsmodule definition
instance of
linked tomodule instance

XMLParser

Figure 5.5: Generating multiple instances of a single module definition

118 PROBLEMS WITH THE JAVA MODULE SYSTEM

5.3 Shallow validation

The Java Module System defines an operation called shallow validation, which checks if
a fully-qualified name of a class within a module instance clashes with any of the fully-
qualified names of classes exported from imported module instances. Shallow validation
is performed by default during initialisation of a module definition (but can also be turned
off by the administrator) and aborts the process if any matches are found.

There is also a deep validation (not performed by default), which performs shallow
validation and additionally validates the dependencies of classes in the module definition.
We say validation to mean shallow validation.

Let us consider the example in Fig. 5.1 (page 112) again. If no validation occurs,
“ParserX” resolves to the definition in XMLParser in the original semantics. However,
if validation is performed, it fails, since there is a name clash, and prevents execution.

If the developer is aware of the name clash and wants to use XMLParser’s ParserX
(to allow for sharing between the module definitions), he has to disable the validation for
XSLT (validation can be disabled per module definition).

The developer cannot force the classes in XSLT to use the local ParserX: if he leaves
the validation on, it will tell him that there is a name clash, and execution will stop. Even
if execution was to somehow continue (by ignoring the exceptions thrown), all references
to ParserX would still resolve to XMLParser’s ParserX.

Therefore, the only guarantee validation gives is that, if it succeeds, there will be no
unexpected behaviour due to the unintuitive class resolution semantics. The draft specific-
ation [51] states that names clashes should be avoided, and are prevented by validation;
however, as shown in this chapter, throwing an exception when a name clash occurs makes
any software design in this system fragile. As the validation is enabled by default, the class
resolution ordering is, in most cases, redundant.

Since validation prevents many realistic (and useful) scenarios from ever executing, we
did not include it in our formalisation of JMS. However, if a developer intended to share
objects of some type across module instances with our reversed resolution algorithm, a
form of shallow validation applied only for that specific type and only to a specific part of
the module import graph would be useful — we leave this as an option for future work.

5.4 A stronger form of information hiding

JMS enables a form of component-level information hiding with (i) selective exporting,
and (2) optional re-exporting. However, even though its repositories provide a limited
form of context-sensitive importing, its module visibility remains transitive (§1.1.5).

For example, if a module, M, imports another, N, which in turn imports a third, O,
then N can hide any name exported by O from M. However, the developer of M is free to

CONCLUSION 119

directly import O. In JMS, all instances are shared, so N cannot encapsulate neither O’s
exported names, nor O’s accessible static data, from M. For this reason, we refer to JMS’s
information hiding as weak information hiding.

Our solution to the problem of inflexible module instantiation allows developers to
define module instantiation policies. Through these policies, a module can create its own
instances of the module definitions it imports. Continuing with the above example, if N
creates its own instance of O, then it encapsulates the accessible static data of that instance
from M. We refer to this type of information hiding as instance-based information hiding.

5.5 Conclusion

Using Lightweight Java Module System, we have uncovered two key deficiencies of JMS,
and informally described our proposals for fixing them.

OSGi uses the same unintuitive name resolution as JMS. Both .NET and OCaml use
module-prefixed name references to select among the available imported names, while an
ambiguous name reference throws an error at compile-time. Jiazzi’s unit files fix package
bindings to specific Java packages, and thus a package-qualified name can only refer to a
single entity; references to unit names within the underlying language are not supported.
Our solution provides a user with an intuitive class resolution, where one is always able to
resolve an ambiguous reference to any of the visible alternative even though the underlying
language lacks support for module-prefixed references.

Our tests showed that all analysed module systems enforce sharing of module instances
within a single application, and that sharing of module instances across multiple applica-
tions is either enforced (OSGi), or not supported (e.g. .NET, OCaml, Jiazzi). While JMS
has similar sharing semantics to OSGi, our solution is, in this respect, more expressive than
all of the mentioned module systems. In our solution, module instances can be shared or
not, whether in a single program or across multiple programs.

The next chapter formalises our proposals, and checks whether type soundness is pre-
served. In Chapter 8, we develop an even stronger form of information hiding.

6
Improved Java Module System (iJAM)

In this chapter, we formalise the improvements to the Java Module System that we pro-
posed in the previous chapter. This is done by adapting our existing formalisation (LJAM).
The resulting language is called the Improved Java Module System (iJAM).

The following sections show the difference between LJAM’s and iJAM’s syntax (§6.1),
operational semantics (§6.2), type system (§6.3), type checking (§6.4), and proof of type
soundness (§6.5).

The full Ott definition, the complete Isabelle/HOL proof of type soundness, and vari-
ous other related documents can be found at the following address:

http://www.cl.cam.ac.uk/research/pls/javasem/iJAM/

6.1 Syntax

The core language remains unchanged; we only modify the module-level language. The
following section shows the changes to the user and inner syntax.

6.1.1 User syntax

The user syntax of module files, mf , for iJAM is a subset of the one for LJAM:

repl superpackage mn {member pn; imp; export fqn; }

http://www.cl.cam.ac.uk/research/pls/javasem/iJAM/

122 IMPROVED JAVA MODULE SYSTEM (IJAM)

Compared to the user syntax of LJAM’s module files (§4.2.3), the definition is now pre-
fixed with a replication modifier, repl , while the previous import statements, ‘importm;’,
are replaced with ‘imp;’, which can specify client’s replication policy and boundary re-
naming — see Fig. 6.1. Meta-variable amn stands for abstract module name.

repl ::= replication modifier
| default
| replicating replicating
| singleton singleton

imp ::= import statement
| import m br default
| import shared m br shared
| import own m br own
| import m as amn br as

br ::= boundary renaming ((fqn × fqn) list)
| M no renaming
| with fqn1 as fqn ′1, ..., fqnk as fqn ′k M renaming pairs

Figure 6.1: iJAM’s changes to user syntax

6.1.2 Inner syntax

The inner syntax for a module definition, mdc, has changed following the changes in the
user syntax. The added and updated parts of the inner syntax are shown in Fig. 6.2.

As in LJAM, the module instance identifiers are stored in repository caches. LJAM’s
caches, however, simply mapped module definitions,mdc’s, to module instance identifiers
of their module instances: ‘mdc ⇀ mi ’. In iJAM, the import dependencies need to be
taken into account, so the cache type becomes: ‘mdc ⇀ (imp dep ⇀ mi)’.

The two user syntax terms, repl and imp, correspond to the replication policy annota-
tions described in Chapter 5, on a module and on its client’s import statement, respectively.
The import dependency, imp dep, is the replication policy that results from the interac-
tion between the two — this interaction is also described in the previous chapter. The mi

parameter to its Own case is a reference to the module instance created (not its owner).
The module hierarchy, MH , stores the connection between module instances (through

their identifiers). In LJAM, this was simply ‘mi ⇀ mi’, but in iJAM each imported
module instance is also associated with the appropriate boundary renaming of class names,
so MH ’s type becomes ‘mi ⇀ mi br ’. This way the class lookup function can easily
update the name of the class it is looking for when crossing module boundaries.

Finally, the initialisation action, ‘rn . initialise (imp) ;’, now takes the whole import
statement, imp, instead of simply the name of the imported module, m. This way the
semantics of administration actions can take replication policy into account.

OPERATIONAL SEMANTICS 123

mdc ::= module definition

| repl modulemn { cldc impk
k fqn } def.

φ ::= R cache (mdc ⇀ (imp dep ⇀ mi))
| [] M empty repository’s cache
| φ [mdc 7→ imp dep 7→ mi] M map imp dep to mi in map for mdc

| φ \mdc M remove mapping for mdc

imp dep ::= import dependency
| Shared default import
| Ownmi instance of imported module
| As amn ref. to imported module

MH ::= module hierarchy (mi ⇀ mhv)
| [] M empty module hierarchy
| [mi 7→ mhv] M maps mi to its def. and imports
| MH1 ..MHk M composes many

mhv ::= module hierarchy value (md ×mibr)
| (md , mibr) M def.

mibr ::= assoc. boundary renaming (mi × br)
| mi br M def.

Figure 6.2: iJAM’s changes to the inner syntax

6.2 Operational semantics

The semantics of statement reduction changes only through the adapted class resolution,
which has to allow for module-boundary renaming. On the other hand, module definition
initialisation now has to include replication policies, and to make user-provided boundary-
renaming available to class resolution.

6.2.1 Adapted class resolution

Here, we implement the class resolution described in the previous chapter. The high-level
algorithm is to search (1) the core module, (2) the module instance itself, and, finally,
(3) the imported module instances (recursively). The main difference with the LJAM’s
algorithm (§4.3.1) is the swapping of (2) and (3).

find cld ((RC , MH),mi.pn, fqn) : (P × ctx × fqn)→ (ctx × cld)opt =

if ¬(no core renaming (RC , MH)) then None else

match find cld in core ((RC , MH), fqn) with Some ctxcld → Some ctxcld
| None → match MH mi with

None → None | Some (repl modulemn { cld impk
k fqn },mibr)→

match find cld in self (cld, pn, fqn) with

Some cld → Some (mi .(package name (cld)), cld)
| None → find cld in imports (MH ,mibr, fqn)

124 IMPROVED JAVA MODULE SYSTEM (IJAM)

The reason for the first line of the above function (no core renaming) is explained
in §6.5.1. The functions find cld in core and find cld in self are practically identical
to the ones in LJAM — we do not show the definitions of these functions here.

As for the example illustrating LJAM’s class resolution ordering (Fig. 4.3, page 95),
suppose we have instances of module definitions A, B, C, D, and the core library mod-
ule, Core, all of which are connected as shown in Fig. 6.3. If we started class resolution
(find cld) in A, the instances would get searched as indicated by numbers in the brackets.

The function that searches the imports, find cld in imports, now has to take bound-
ary renaming into account, in addition to information hiding. As mentioned before, each
imported module instance mi is now associated with boundary renamings, br .

1 find cld in imports (MH ,mibr, fqn) : (MH ×mibr × fqn)→ (ctx × cld)opt =

2 match mibr with []→ None | (mi , br) :: mibr
′ →

3 if ¬(acyclic mhMH ∧mis of (mibr
′
) ⊆ dom (MH)) then None else

4 match MH mi with None → None

5 | Some (repl modulemn { cld impk
k fqn },mibr′′)→

6 if br [fqn] /∈ fqn ∨ (fqn /∈ dom (br) ∧ fqn ∈ ran (br))
7 then find cld in imports (MH ,mibr

′
, fqn) else

8 match find cld in module (cld, br [fqn]) with

9 Some cld → Some (mi .(package name (cld)), cld) | None →
10 match find cld in imports (MH ,mibr

′′
, br [fqn]) with

11 Some ctxcld → Some ctxcld | None →
12 find cld in imports (MH ,mibr

′
, fqn)

Key
module instance linked to

D
(4)

Core
(1)

B
(3)

A
(2)

C
(5)

A's first import A's second import

Figure 6.3: iJAM’s class resolution order

OPERATIONAL SEMANTICS 125

Key
importsmodule definition

resolves topublic class

XSLT

̏ParserX ̋

̏OldParser ̋

 ParserX as OldParser

implies

br = [OldParser ↦ ParserX]
dom(br)={OldParser}
ran(br)={ParserX}

XMLParser<3.0>
(exports: ParserX)

ParserX

̏ParserX ̋

XMLParser<2.0>
(exports: ParserX)

ParserX

̏ParserX ̋

Figure 6.4: Accessing two different versions from a single context

For example, suppose that XSLT imports (1) ParserX from version 2.0 of XM-
LParser as OldParser, and (2) ParserX from version 3.0 of XMLParser (with no
boundary renaming) — see Fig. 6.4. Therefore, the boundary renaming, br , for the first
import, mi , is ‘ParserX as OldParser’. When resolving “OldParser” within
XSLT, we need to apply br to the class name when the search crosses into mi — we
write br [OldParser] to mean “rename OldParser according to br if there is a map-
ping for it.” Due to the direction of class resolution, we see ‘ParserX as OldParser’
as a map from OldParser to ParserX, i.e. [OldParser7→ParserX], so the domain
of br is {OldParser}, while its range (co-domain) is {ParserX}.

Line 6 in the above definition of find cld in imports expresses the condition when
an import is not searched. It states that an import, mi , is ignored if br [fqn] /∈ fqn, i.e. if
(possibly renamed) fqn is not exported by mi , or if (fqn /∈ dom (br) ∧ fqn ∈ ran (br)),
i.e. if “fqn does not have a different name in mi , and some other name has fqn as a
different name in mi .” In other words, the second part of the condition states that boundary
renaming is, in fact, renaming, and not aliasing, i.e. the original name is hidden.

Therefore, if fqn = ParserX, the first import is ignored, since ParserX does
not have a different name in it (ParserX /∈ {OldParser}) and some other name,
OldParser, has ParserX as a different name in it (ParserX ∈ {ParserX}).

6.2.2 Replication policies

The semantics of the install and uninstall administrator actions is identical to that of LJAM,
since the two actions are independent from replication policies and boundary renamings.

126 IMPROVED JAVA MODULE SYSTEM (IJAM)

R EXISTING INSTANCE

1. imp name (imp) = m

2.find md (RC , rn1, m) = (rn2, md
c) 3.RC (rn2) = R2

4.R body (R2) = (mdc2, φ2) 5.mi ′ /∈ dom (MH)

6. imp dep of (mdc, mi ′, imp) = imp dep

7. φ2 (mdc, imp dep) = mi

((RC , MH), L, H , sl
l)

mi=rn1 .get instance (imp)

−−−−−−−−−−−−−−−−−→ ((RC , MH), L, H , sl
l)

R NEW INSTANCE

1. imp name (imp) = m

2.find md (RC , rn1, m) = (rn2, md
c) 3.RC (rn2) = R2

4.R body (R2) = (mdc2, φ2) 5.mi ′ /∈ dom (MH)

6. imp dep of (mdc, mi ′, imp) = imp dep ′

7. φ2 (mdc, imp dep ′) = null

8.mdc = repl module m { cldc impk
k

fqn }

9. ((RC , MH), L, H , sl
l)

mik=rn2 .get instance (impk)
k

−−−−−−−−−−−−−−−−−−−→ ((RC ′, MH ′), L, H , sl
l)

10.mi /∈ dom (MH ′) 11. imp dep of (mdc, mi , imp) = imp dep

12. `mi md
c md 13. imp br (impk) = brk

k

14.MH ′′ = MH ′ [mi 7→ (md , mik brk

k

)] 15.RC ′ (rn2) = R′2
16.R body (R′2) = (mdc3, φ3)

17.R update (R′2, md
c
3, φ3 [mdc 7→ imp dep 7→ mi]) = R′′2

18.RC ′′ = RC ′ [rn2 7→ R′′2] 19. (RC ′′, MH ′′) `mi md

((RC , MH), L, H , sl
l)

mi=rn1 .get instance (imp)

−−−−−−−−−−−−−−−−−→ ((RC ′′, MH ′′), L, H , sl
l)

Figure 6.5: iJAM’s operational semantics for initialisation actions

On the other hand, obtaining an existing or a new module instance must take both of
the new concepts into account. Figure 6.5 shows the detailed semantics of the two cases.
Here, we explain the differences with the corresponding rules in LJAM.

The first rule, R EXISTING INSTANCE, proceeds as follows: (1) with imp name, ex-
tracts the module name, m, from the given import statement, imp; (2) starting the search in
repository named rn1, finds a module definition named m, mdc, within repository named
rn2; (3-4) inspects the contents of the repository named rn2; (5) finds a fresh module in-
stance identifier, mi ′; (6) with imp dep of , generates the import dependency, imp dep,
from the annotations in mdc, from mi ′, and from imp; and, (7) finds an existing mapping,
mi , for mdc and imp dep in rn2’s cache.

The function imp dep of creates the appropriate import dependency given the an-
notation on both the import statement and the imported module definition — it respects

TYPE SYSTEM 127

the function presented in §5.2 (page 117). In case the resulting dependency is Own, the
function needs a way to generate a unique import dependency that will not clash with
any other when cached. So, a fresh module instance, mi , is passed into the function,
which outputs ‘Own mi ’ when a fresh module instance is required. Therefore, step (5) of
R EXISTING INSTANCE is there just so step (6) can go through. 1

The second rule, R NEW INSTANCE, describes the case where no appropriate module
instance is already cached. It (1-6) takes a few steps as before, (7) finds that no module
instance is mapped for mdc and imp dep, (8) inspects the contents of mdc, (9) recursively
creates module instances named mik

k from import statements impk
k , resulting in pro-

gram state (RC ′, MH ′), (10) finds a fresh module instance identifier, mi , (11) generates
the import dependency, imp dep, from mdc, mi , and imp, (12) creates md , a module
instance of mdc, (13) extracts boundary-renamings, brk

k
, from module’s import state-

ments, impk
k , with imp br, (14) maps mi to md , mik

k , and br k
k

in MH ′, producing
MH ′′, (15-16) finds the repository named rn2 and inspects its contents, (17) caches mi for
mdc under import dependency imp dep in R′2, producing R′′2 , (18) re-maps rn2 to R′′2 , and
(19) typechecks md in the final context.

Steps (10-11) generate a fresh import dependency after the recursive initialisation has
completed. This is required, since mi ′ might have been bound during step (9). An altern-
ative approach would be to bind mi ′ to a dummy value before step (9) to guarantee that it
does not get overridden.

Step (14) associates imported module instances to the corresponding boundary renam-
ings within the module hierarchy. The adapted class resolution (§6.2.1) uses these name
pairs to appropriately rename the target class name when crossing module boundaries.

6.3 Type system

The definitions of the type and the subtyping relation are identical to those of LJAM —
see §4.4.1 (page 101) and §4.4.2 (page 101).

6.4 Type checking

Most well-formedness relations are identical to those of LJAM. Only minor changes ap-
pear in relations for well-formedness of the adapted inner structures. These are the module
hierarchy, MH , the repository cache, φ, and the module instance, md . The updated rela-
tions are shown in Fig. 6.6.

1Since mi ′ is fresh, and mi is not (it is in cache), they are necessarily distinct, which implies that Own
module instances stored in the cache cannot be reused. An alternative would be to not cache them at all.

128 IMPROVED JAVA MODULE SYSTEM (IJAM)

WF MH

1. acyclic mh MH

2.∀mi ∈ dom (MH) . ∃md mibr .MH (mi) = (md , mibr) ∧ (RC , MH) `mi md

RC ` MH

WF RMIS

1. ∀mdc imp dep .∀mi . φ (mdc, imp dep) = mi −→ mi ∈ dom (MH)

MH ` φ

WF MODULE

1. full name (cldj) = fqnj

j
2.distinct (fqnj

j
)

3. (RC , MH) `mi cldj

j
4. acyclic cldsmi(RC , MH)

5.MH (mi) = (md , mibr) ∧ no core renaming in mibrs ((RC , MH), mibr)

(RC , MH) `mi repl module mn { cldj
j

impk
k

fqn }

Figure 6.6: iJAM’s updated well-formedness relations

The WF MH rule exposes some of the changed structure of MH , but the premises are
essentially the same: MH must be acyclic (§4.3.1), and all module instances identifiers
are mapped to well-formed module instances.

Similarly, the cache well-formedness rule still states that the co-domain of the cache
must be a subset of the module hierarchy’s domain. The premise is more complicated than
in LJAM due to the more complex structure of the cache.

The first four premises of WF MODULE are identical to those in LJAM. The last one
has been added: it states that there can be no renaming of the exported core library classes
by this module instance, mi — this property is explained further in §6.5.1 (page 129).

6.5 Proof of type soundness

One of the key lemmas in the LJAM’s proof, which iJAM’s adapted class resolution
breaks, is Lemma 15 (§4.4.4, page 102). It says that if we look for a class with name
fqn in context ctx , and we find a class definition, cld ′, in context ctx ′, then we will get the
same result if we start the search at ctx ′ instead:

find cld (P , ctx , fqn) = Some (ctx ′, cld ′) =⇒
find cld (P , ctx ′, fqn) = Some (ctx ′, cld ′)

In iJAM, this lemma does not hold any more, because fqn is not necessarily the same
as the fully-qualified name of cld ′ — this is due to boundary renaming. For this reason,
we modify the lemma by replacing fqn in the goal with full name (cld ′).

PROOF OF TYPE SOUNDNESS 129

Lemma 21 (Target context equivalence for class lookups — adapted).
find cld (P , ctx , fqn) = Some (ctx ′, cld ′) =⇒
find cld (P , ctx ′, full name (cld ′)) = Some (ctx ′, cld ′)

Explanation. If we look for a class named fqn in context ctx , and we find a class definition
cld ′ in context ctx ′, then we will get the same result if we start the search in ctx ′ and look
for a class with the same name as cld ′, instead.

However, the lemma did not hold initially (when developing the semantics), because
the two function calls first search within the core libraries, each with a possibly different
class name, which can therefore lead to a different result. For example, suppose the first
call searches for a class named A: it does not find a class named A in the core libraries, but
finds a class named B in one of the imported modules. The second call then searches for a
class B, and finds a class B in the core libraries. The contexts of the two class definitions,
as well as the definitions themselves, are different.

If we could not use the modified lemma in iJAM’s proof, we would not be able to reuse
large parts of LJAM’s proof. (See Appendix A for the dependency graph of the lemmas
and theorems presented in the thesis.)

We solved this problem by placing a well-formedness condition on boundary renaming
(shown in §6.5.1), which prevents module definitions from renaming a class from and to
a name already exported by the core library module. In fact, already the from part makes
the modified lemma hold again, but we added the to part, too, to avoid unexpected class
resolution results. Without the to part, developers could rename an imported class to a
class already exported by a core library — any use of that name would resolve to the class
in the core library, not in the imported module, which would be unintuitive.

The restrictions ensure that a class reference resolves to a core library class iff the
reference is a name of a class exported by the core library. It is not clear to us whether
iJAM is type-sound without the these restrictions; however, this is not important, since, as
described above, we would obtain less intuitive semantics.

6.5.1 Well-formedness for boundary renaming

The main relation to restrict boundary renaming (no core renaming) is defined on a
program, P , which is in the NCR DEF decomposed into ‘(RC , MH)’ — see Fig. 6.7. The
rule states that the helper relation, no core renaming in mibrs, holds for all boundary
renamings found within MH .

The second rule defines the no core renaming in mibrs relation. It states that if
we can find a class within the core library, its name cannot be used in any boundary
renaming, i.e. a class cannot be renamed from or to a class exported by the core library.

With this restriction in place, Lemma 21 (page 129) becomes valid, and we can reuse
LJAM’s proof of type soundness with only trivial modifications.

130 IMPROVED JAVA MODULE SYSTEM (IJAM)

NCR DEF

∀mi ∈ dom (MH) . ∃md mibr .
(

MH (mi) = (md , mibr) ∧
no core renaming in mibrs ((RC , MH), mibr)

)
no core renaming (RC , MH)

NCRIM DEF

∀br ∈ br1 .. brk .∀fqn .
(

(∃ctx cld .find cld in core (P , fqn) = (ctx , cld)) −→
fqn /∈ br

)
no core renaming in mibrs (P , mi1 br1 ..mik brk)

Figure 6.7: No renaming of classes exported by the core library

6.6 Reuse within the definitions and proof scripts

Since LJAM is an extension of LJ, and iJAM is based on LJAM, they share much of the
semantic definitions. Specifically, the language statements, e.g. the method call statement,
have syntactically identical definitions in all three languages; also syntactically identical
are the statement well-formedness and reduction relations — that is, the semantics of
these relations differ through different definitions of the syntactically identical judgements
(e.g. the class resolution judgement) used in their rules.

The proof scripts for the progress and well-formedness of the statement reduction
relation are practically identical for all the three languages (5 lines out of 350 lines differ).
This is achieved by carefully abstracting the key lemmas, e.g. Lemma 21 mentioned in
this chapter. Due to such abstractions, we were able to achieve high reuse within both the
definitions and their proof scripts as shown by the two diagrams in Fig. 6.8 (relative area
corresponds to relative number of lines of definition/proof script).

LJ
(1381 lines)

LJAM
(2502 lines)

iJAM
(2671 lines)

LJ
(2741 lines; 254 lemmas)

LJAM
(4386 lines; 382 lem

m
as)

iJAM
(4508 lines; 393 lemmas)

Ott Definition
(lines)

Proof Script
(lines; lemmas)

Figure 6.8: Reuse within the language definitions and their proof scripts

7
Implementation

In this chapter, we describe our proof-of-concept implementation of both LJAM and iJAM.
We only describe the most interesting parts of the implementation, focusing on module
initialisation (§7.2) and class resolution (§7.3). More information, the documentation, and
the complete source code can be found online:

http://www.cl.cam.ac.uk/research/pls/javasem/iJAM/

7.1 Overview

We implement our module system on top of Java. The system can model the semantics
of either LJAM or iJAM, and the code encapsulated by module definitions can contain
any valid Java code. The parser for the module files was generated with JavaCC [26],
a Java compiler compiler. The system simulates the compilation of module files into
module definitions, and implements the repository context, RC , the module hierarchy,
MH , administration actions (according to replication policies), and class resolution (which
can include boundary renaming). Since we do not modify the JVM, sharing of renamed
classes is not supported (§7.6).

http://www.cl.cam.ac.uk/research/pls/javasem/iJAM/

132 IMPLEMENTATION

7.2 Creation of module instances

When a module instance is required, the repository that holds the corresponding module
definition checks the import dependency, which is specified by the client and the imported
module definitions (§5.2). The repository either returns an existing instance, or creates a
new one. A repository stores its module instances in a map of maps:

Map<ModuleDefinition, Map<ImportDependency, Module>>

The above Java type corresponds exactly to iJAM’s repository cache, φ, in our formal
definition (Fig. 6.2, page 123): md ⇀ (imp dep ⇀ mi). LJAM’s cache, md ⇀ mi , is
simulated by always using Shared for imp dep.

Since ImportDependency acts as a key in the inner maps, we define its equals
and hashCode methods. Both methods guarantee uniqueness for an own-type import
dependencies, equality for shared-type dependencies, and equality based on developer-
assigned codenames (abstract module names, amn) for as-type dependencies.

This implementation allows us to use Java’s HashMaps to determine if a module in-
stance for a module definition with a particular import dependency already exists in the
cache simply by using the map’s contains method.

7.3 Class resolution

In LJAM, the class resolution searches (1) the core library module, (2) the imported mod-
ules (recursively), and, finally, (3) the module itself. For iJAM, we have swapped steps
(2) and (3), and added module-boundary renaming. The reasons for this are explained in
§5.1 (page 111), while the formalisation of the class resolution can be found in §6.2.1
(page 123). By default, classloading is done according to iJAM’s semantics; however, in
compatibility mode, classloading behaves as specified in LJAM (§4.3.1, page 93).

The search is performed on module instances within the module hierarchy (MH). As
explained in §1.1.3, module instances are classloaders in disguise, which delegate the class
resolution according to the semantics of either LJAM or iJAM.

In our implementation, each module instance (an object of class Module) holds ref-
erences to module instances it imports. Each of those imports is also associated with
a module-boundary renaming map — these renaming maps are ignored when executing
according to LJAM’s semantics.

Apart from the search order and boundary renaming, we also have visibility con-
straints. That is, a class in the imported module definition is visible only if it is (re-
cursively) exported and public.

The implementation of the loadClass function is shown in Fig. 7.1. Note that the
classloader first checks (with findLoadedClass) if it has loaded that class before —

CLASS RESOLUTION 133

1 public Class<?> loadClass(final String name)
2 throws ClassNotFoundException {
3 // CHECK CLASSLOADER’S CACHE
4 Class<?> cl = findLoadedClass(name);
5 if (cl != null)
6 return cl;
7 // CHECK SYSTEM’S CORE CLASSES
8 if (name.startsWith("java.") || name.startsWith("javax."))
9 return findSystemClass(name);

10 // CHECK ITS OWN CONTENTS (if in iJAM mode)
11 if (!Runtime.COMPATIBILITY_MODE && md.members.contains(name)
12 && (cl = loadClassInSelf(name)) != null)
13 return cl;
14 // CHECK IMPORTS (with importer’s renaming)
15 for (final Module link : imports.keySet()) {
16 final Map<String, String> renaming = imports.get(link);
17 String nameInImport = name; // LJAM → ignore renaming.
18 if (!Runtime.COMPATIBILITY_MODE) // iJAM &&
19 if (!renaming.containsKey(name)) { // name not in domain,
20 if (renaming.containsValue(name)) // but found in range
21 continue; // → skip this import.
22 } else nameInImport = renaming.get(name);
23 if (link.md.exports.contains(nameInImport)) // Exported?
24 try {
25 cl = link.loadClass(nameInImport); // Recursive search.
26 cl = renameClass(cl, name); // Explained in § 7.6.
27 if (Modifier.isPublic(cl.getModifiers())) // Public?
28 return cl;
29 } catch (final ClassNotFoundException ex) {}
30 }
31 // CHECK ITS OWN CONTENTS (if in LJAM mode)
32 if (Runtime.COMPATIBILITY_MODE && md.members.contains(name)
33 && (cl = loadClassInSelf(name)) != null)
34 return cl;
35 // THROW EXCEPTION SINCE ALL ABOVE FAILED
36 throw new ClassNotFoundException(name);
37 }

Figure 7.1: Implementation of LJAM’s/iJAM’s class resolution

if so, it returns the previous result. We do not show the implementation of functions
findSystemClass and loadClassInSelf, which have obvious semantics.

The variable imports (lines 15–16) refers to a map from imported modules to cor-
responding renaming pairs. Since we use Java’s java.util.LinkedHashMap, the
order of keys is preserved, i.e. imports are searched as they are declared in the module file.

Lines 19–23 correspond to the condition described in §6.2.1, which states when class
resolution skips an import: lines 19–20 represent ‘fqn /∈ dom (br) ∧ fqn ∈ ran (br)’,
i.e. “fqn (name being resolved) does not have a different name in the import, and some
other name has fqn as a different name in the import.” The line 23 checks if br [fqn] ∈ fqn,
i.e. if fqn is exported (possibly under a different name) by the import.

134 IMPLEMENTATION

If none of the steps find an appropriate class definition, the function throws an excep-
tion (line 36). However, if class resolution is delegated to an imported module instance,
which fails to find a class and throws an exception, that exception is ignored (line 29),
since the search should continue in the module instance that delegated its class resolution.

7.4 Making the JVM use our code

So far, we have described the code that resolves a type reference to a type definition. Now,
we explain how to get the Java Virtual Machine to use this code for type resolution when
executing Java code.

The solution is fortunately quite straightforward. When a Java classloader resolves a
given type reference to a type definition, the same classloader will be used to resolve all
type references within that type definition. Of course, a classloader can always delegate
its classloading to another classloader.

Therefore, our implementation simply bootstraps the classloading process, while the
JVM makes sure that our classloaders are being used. More specifically, our implement-
ation (1) uses the classloader that corresponds to a module instance to load the module’s
main class using the above loadClass method, (2) creates an instance of that class with
Java reflection libraries, and (3) executes the mainmethod of the class with no arguments.
When the JVM needs to resolve a type reference in that class, it calls the loadClass
method of the same classloader, which then delegates classloading to classloaders corres-
ponding to imported module instances, as required.

The code within the member classes is free to use custom classloaders to resolve a
type reference. Of course, such a type reference (and the type references occurring within
the resolved type definitions) will be resolved according to the code within the custom
classloader, completely ignoring our classloaders.

7.5 Example runs

In this section, we show a few example runs, which demonstrate the key features of the
implementation. Our example is based on the WebCalendar example shown in the intro-
duction (§1.1.1); however, we put all classes into the default Java package for a clearer
illustration of the features. The source code of the classes can be found in Appendix D.
The example program’s module-level source code is displayed in Fig. 7.2, while the pro-
gram’s runtime structure is shown graphically in Fig. 7.3.

The ‘member default;’ statement within each module file is our syntax for making
the (locally available) classes of the default Java package part of the module definitions.
The default package is a package with no name, a special case in our formalisation.

EXAMPLE RUNS 135

superpackage XMLParser {member default; export Parser;}
superpackage XSLT {member default;

import XMLParser; export Config;}
superpackage ServletEngine {member default;

import XMLParser; export Config;}
superpackage WebCalendar {member default;

import XSLT with Config as XSLT_Config;
import ServletEngine;}

Figure 7.2: The module-level source code for the example program

WebCalendar

Config as XSLT_Config

ServletEngine
(exports: Config)

Config

XSLT
(exports: Config)

Config

XMLParser
(exports: Parser)

̏XSLT_Config ̋

̏Config ̋

Parser

Key

public class

module instance

module definition imports

resolves to
linked to
instance of

Figure 7.3: The high-level structure of the example program

Both Config classes use the XMLParser::Parser, which tracks the number of its
instances using a static variable. WebCalendar::Main (not visible in the figure) creates
instances of “XSLT Config” and “Config”. Running Main outputs:

XSLT::Config using 1. instance of Parser.

ServletEngine::Config using 2. instance of Parser.

This indicates that there is only one instance of the XMLParser module definition. The
example also shows that the Config class in XSLT is correctly ignored when resolving
“Config” within WebCalendar.

136 IMPLEMENTATION

Now we modify the existing example by adding a UnitTest class to ServletEngine
and WebCalendar, and annotating ServletEngine’s import statement with own. Of the
underlying Java source code, we modify only WebCalendar::Main to start by running a
UnitTest. Figure 7.4 gives a pictorial representation.

The program’s output is the following:

WebCalendar::UnitTest complete.

XSLT::Config using 1. instance of Parser.

ServletEngine::Config using 1. instance of Parser.

The “UnitTest” class reference resolved to the local class, not the imported one
(from ServletEngine). Also, both XSLT and ServletEngine report that they are using the
first instance of Parser — this is because they used two different Parser classes com-
ing from two separate module instances of XMLParser.

WebCalendar

Config as XSLT_Config

ServletEngine
(exports: Config,UnitTest)

Config

XSLT
(exports: Config)

Config

XMLParser
(exports: Parser)

̏XSLT_Config ̋

Parser

Key

public class

module instance

own

̏Config ̋

UnitTest

UnitTest

̏UnitTest ̋

imports

resolves to
linked to
instance of

module definition

Figure 7.4: The example program (modified)

If we run the same program in compatibility mode, i.e. according to LJAM’s se-
mantics, the program throws a NoClassDefFoundError exception, since it cannot
locate XSLT Config. If we remove references to Config classes, then the output

A LIMITATION 137

shows how unintuitive and undesired LJAM’s class resolution can be, i.e. WebCalendar’s
UnitTest is ignored even though the class reference appears in the same module:

ServletEngine::UnitTest complete.

7.6 A limitation

When a Java Virtual Machine (JVM) encounters a class reference, e.g. “XSLT Config”,
it calls the loadClass method of the appropriate classloader, as described in the previ-
ous section. However, once a Class object is returned by the method, JVM performs a
series of runtime checks on it for consistency and security purposes.

Among these, JVM also checks that the obtained class has the name that was originally
requested. This poses a problem for our boundary renaming, e.g. the class returned is
named “Config”, not “XSLT Config” as requested. Our implementation uses the Byte
Code Engineering Library (BCEL) [42] to satisfy this check in an ad-hoc manner. That is,
we rename the class just before passing it to JVM.

The problem is that JVM stores a distinct Class object for every different naming
of a single logical class. This implies that sharing over renamed classes is currently not
supported. This is essentially because it is not possible to map two distinct class names
to the same Class object; however, we believe that only a small change to the JVM is
required to allow this.

Note that such a change to the JVM will break any program that relies on the invariant
that “two distinct class names must point to two distinct classes.” However, programmers
tend to use the Java’s instanceof operator, which checks if a certain object is compatible
with a certain type, or the Class’s method isAssignableFrom, which checks two
types for subtyping. Both the operator and the method could easily be made compatible
with our class renaming operations.

7.7 Conclusion

In this section, we have presented our proof-of-concept implementation of both LJAM
and iJAM. The implementation can closely follow the semantics of both formalisations.
Note that we do not implement features not formalised by the semantics — see the start
of Chapter 4 for the list of formalised features.

Consisting of only about 1200 lines of code, our efforts prove that the core concepts
of the module system (and our improvements of it) can be implemented relatively easily.

8
Case study — Thorn

Scripting languages are highly popular due to their support for rapid and exploratory de-
velopment. They typically have lightweight syntax, weak data privacy, dynamic typing,
powerful aggregate data types, and allow execution of the completed parts of incomplete
programs. The price of these features comes later in the software life cycle, since scripts
are hard to evolve and compose, and are often slow. An additional weakness of most
scripting languages is their lack of support for concurrency, which is increasingly required
for scalability on parallel architectures, for handling concurrent real-world events, and for
interacting with remote distributed services.

Thorn is a novel, object-oriented, general purpose programming language targeting
the JVM. It has a careful selection of features that support the evolution of scripts into
industrial grade programs. For example, it has an expressive module system that supports
evolution and scalability, an optional type annotation facility for declarations, and support
for concurrency based on message passing between lightweight, isolated processes. On
the implementation side, Thorn has been designed to accommodate the evolution of the
language itself through a compiler plugin mechanism.

An example Thorn program, a solution to the Dining Philosophers problem, is shown
in Fig. 8.1. In the example, forks and philosophers are represented as components, ana-
logous to threads or processes, which communicate by sending messages back and forth,
and do not share any state. Demonstrated features include asynchronous message passing,
pattern matching, and list comprehension. More information about the example and the
language itself can be found elsewhere [8].

140 CASE STUDY — THORN

component Fork(n) {
var holder := null;
var waiting := null;
fun taken(phil) {holder := phil; phil <<< "taken";}
body {

while (true) {
receive {

"die" => {break;}
| {: take:_ :} from phil => {

if (holder == null) taken(phil);
else waiting := phil;

}
| "drop" from phil => {

phil <<< "dropped";
if (waiting != null) {

taken(waiting);
waiting := null;

} else holder := null;
} } } }

}Fork;

forks = %[spawn Fork(i) | for i <- 0 .. 2];

component Phil(name, ln, rn, iter) {
body {

left = forks(ln);
right = forks(rn);
for(i <- 1 .. iter) {

THINK: I think, therefore I am.
left <<< {: take:name :}; receive{"taken" => {}};
right <<< {: take:name :}; receive{"taken" => {}};

CRITICAL: I eat, therefore I am fed.
right <<< "drop"; receive{"dropped" => {}};
left <<< "drop"; receive{"dropped" => {}};

} }
}Phil;

phils = [
spawn Phil("Kant", 0, 1, 10),
spawn Phil("Hume", 1, 2, 12),
spawn Phil("Marx", 0, 2, 8)];
A 3-way philosophical dinner now ensues.

Figure 8.1: Dining Philosophers in Thorn

This chapter focuses on Thorn’s module system only. For the purposes of this chapter,
one can think of Thorn as a Java-like language with no packages or backward compatibility
constraints, and with a goal of allowing quick prototyping. Some of the other language
details are explained when relevant.

Our high-level goals for Thorn’s module system were to make its semantics intuitive
and expressive, and its modules reusable and robust against change — one of the main

NON-INTRUSIVENESS 141

priorities was to localise the influence of a single module (discussed in §1.2). As in the
JMS, we have module definitions and module instances. Modules contain member Thorn
entities, import other modules, and control visibility of their entities to client modules.

We also make the module system non-intrusive (appropriate for scripting), and give
developers an iJAM-like control over data sharing and separation. Finally, we explore
some extra features: per-import overriding of the repository, module-prefixed references,
name aliasing, value modules, module-level generics, and inclusion policies for imports.

We design the syntax, and give the informal semantics for Thorn’s module system. We
also list the conditions required for avoiding name ambiguity and for namespace localisa-
tion, find the effects of module-prefixed type references on class resolution, and explore
the interaction between multiple module instances and value (un-)marshalling.

8.1 Non-intrusiveness

For Thorn, it is important that the module system does not get in the way of rapid proto-
typing. We made the following design decisions to achieve this goal.

Thorn source files, by default, belong to the same, unnamed module definition, i.e. a
module definition that cannot be imported. Consequently, a source file does not represent
a semantic boundary. When an application grows, language entities (excluding modules)
can be enclosed within the module construct, mc.

mc ::= module construct
| va module mn { impmem def } def.

The definitions within a module, def , can refer to definitions outside of the module only
through explicit module imports, imp, or through file inclusions, mem — a module can
include top-level language definitions (excluding modules) defined in the same or in other
files, by explicitly listing file names by URI. With this, a single source file can be referred
to within multiple module files. The value annotation, va, is explained in §8.3.

mem ::= membership declaration in a module file
| member URI ; include file at URI

A module can be compiled just-in-time (before being executed), or it can be compiled
normally, which places the packaged bytecode into the default, filesystem-based reposit-
ory, making it available for importing. The location of an imported module can also be
overridden by specifying its URL as an annotation on an import statement (§8.6).

m loc ::= module location override
| default
| from URL load from URL

142 CASE STUDY — THORN

8.2 Namespace control & robustness

Through its source files, a module defines various top-level entities, such as classes, fields,
and methods. In Thorn, we refer to their names with meta-variables cn, vn, and meth,
respectively. To refer to any of them, we use the meta-variable id .

id ::= non-fully-qualified name
| cn class name
| vn variable name
| meth method name

Since id does not specify a module name, it cannot (in general) uniquely identify
an entity in the system — in Thorn’s world, this makes it a non-fully-qualified refer-
ence. We can prefix id with mn, a meta-variable we use for module names, to obtain a
fully-qualified reference, i.e. ‘mn.id ’. We use the meta-variable name for both non-fully-
qualified and fully-qualified references.

name ::= possibly fully-qualified name
| id simple identifier
| mn.id fully qualified name

If a name is not fully-qualified, i.e. it is not prefixed with a module name, the name
is resolved first within the members the module, then within the imported modules. This
precedence ordering makes the code of a module more robust to changes outside of it
(explained in Chapter 5). For example, if a non-fully-qualified name already resolves to a
local entity, then no changes within the imported modules can affect this.

Exported namespaces of imported modules are allowed to overlap. As with existing
Java packages, it is only an error if an ambiguous name is actually used. This approach
makes non-fully-qualified references that resolve to local entities robust against changes
outside the module. However, a non-fully-qualified reference that resolved to a name
exported by an imported module can become ambiguous if a different imported module
starts exporting that name, too — the only way to protect against such breakage is to use
fully-qualified names (or their aliases) for names that resolve within imports.

We allow aliasing of (i) the names of imported modules (alias mn = mn ′ ;), and
(ii) the visible names of entities (alias id = name ;). Note that the alias, id , must be
non-fully-qualified; the declared id becomes part of the local namespace, i.e. it must not
clash with the name of any other member or alias.

ali ::= name alias
| alias mn = mn ′ ; module name alias
| alias id = name ; entity name alias

SHARING VS. ISOLATION 143

To promote rapid prototyping, the whole local namespace (except for the aliases) is
exported by default; however, no imported name is re-exported by default — this localises
the influence of a single module, which is essential for scalability. A name is not exported
if it is declared private, while a name is (re-)exported by declaring it public.

vis ::= visibility declaration
| id : private; do not export id

| name : public; (re-)export name

To guarantee that a fully-qualified name is never ambiguous, (i) the exported names
must not clash, and (ii) the names of imported modules must not clash. To allow de-
velopers to import same-named modules without breaking condition (ii), we allow module
alias annotations, ‘as mn’, on import statements. For example, if module mn ′ is imported
‘as mn’, then all references to mn ′ must use mn (mn ′ is not bound in the local scope).

m ali ::= module name aliasing
| no aliasing
| as mn alias as mn

To further control the locality of a module, we prevent the name of any module from
propagating within clients of its clients through re-export statements. We achieve this as
follows: if mn re-exports ‘mn ′.id ’, then the fully-qualified name for that id within the
clients of mn (if they do not use module aliasing) is ‘mn.id ’, not ‘mn ′.id ’. To prevent
even id from propagating, one can use the combination of entity aliasing and re-exporting.

8.3 Sharing vs. isolation

A Thorn component is logically an independent unit of computation. Components have no
common mutable state, and communicate with each other through message queues. The
concept was introduced for easier parallelisation and process mobility.

As in iJAM, we can have multiple module instances of a single module definition in a
single runtime environment. There can be a single shared module instance for each com-
ponent, and as many non-shared module instances as required. We can place an optional
replication parameter, own, on an import statement, which creates a non-shared module
instance; otherwise, a component-wide instance is obtained. That is, the semantics of the
replication parameter is similar to that of iJAM.

rep ::= replication parameter
| shared
| own own

144 CASE STUDY — THORN

Two non-own import statements referring to the same module name (with the same
import constraints) always refer to the same module instance. Two own import statements
(even with the same import constraints) always refer to different module instances.

Modules do not have any explicit initialisation code. However, they can define top-
level variables of which initial values refer to functions — these are the implicit initialisa-
tion functions of that module. This is similar to the approach taken for ML modules [30].

Imported modules must be initialised before the module itself. They are initialised
according to the order of import statements. Any reference to a yet non-initialised module
during execution throws a runtime exception. Some of the offending references can be
found at compile-time through a control-flow analysis.

Developers can annotate certain modules as value modules. Then, the compiler will
report an error if the module does not define only non-mutable fields with statically-
computable values, or if the imported modules are not value modules themselves. Since
Thorn classes cannot define their own static state, it is safe to share a single instance of a
value module among all components; therefore, value modules are always shared.

va ::= value annotation
| a standard module
| value a value module

8.4 Module-level generics

A Thorn module can also have generic parameters, which are name arguments for expli-
citly specified name parameters of a module. These names can refer to any entity, i.e. a
class, a top-level variable, or a top-level function.

The generic names of a module must be declared with a require clause. Such a clause
declares a name, but provides no binding. Note that this name becomes a part of the local
namespace, but is not exported by default.

req ::= require clause
| require name ; name declared, but not bound

Binding for the names declared through the require clause is specified when a generic
module is imported. That is, the import statement can explicitly provide bindings for all
of the imported module’s parameters. As a matter of convenience, if binding for a name
is not specified explicitly, then Thorn tries to resolve the name within the client module.

ga ::= module-level, generic arguments
| no arguments

| (idk =namek
k
) arbitrary number of arguments

MODULE ARCHIVES 145

The following example shows how the module Concrete specifies GraphNode as the
binding for module Abstract’s Node:

// ======= module Abstract =======

require Node;

// ======= module Concrete =======

import Abstract(Node=GraphNode);

Although the generics of this sort provides more opportunities for reuse, one needs
to take care not to introduce cycles in module initialisation. At the moment, we take a
conservative approach for value modules, i.e. a value module cannot be parametric.

8.5 Module archives

A module definition is defined as a module construct, mc, together with the top-level
entities of the included files. The compiled code of a module definition is stored in a
JAR-like archive, and put into a repository, which makes it available for importing.

By default, no imported module is included in the archive. However, we allow de-
velopers to annotate import statements with the include keyword. This tells the compiler
to include the corresponding module definition into the same archive file.

inc ::= optional include of import
| do not include
| include include import

Such included modules are also referred to as inner modules or member modules. To
further control the influence of a single module, the inclusion does not work recursively,
i.e. modules that an included module imports are not included automatically.

The only change to the runtime semantics of an included module is that it cannot be
directly imported. Every use of an included module must go through its owner. This
provides a stronger form of component-level information hiding.

In §5.4, we discussed JMS’s weak information hiding, and iJAM’s instance-based
information hiding. In the example we used, a module, M, imported another, N, which
in turn imported a third, O. We found that, even in iJAM, N could not encapsulate O’s
exported names from M, since M was free to import an instance of O directly. In Thorn, N
can now include O, preventing M from directly importing O. This provides a better form
of information hiding, which we refer to as strong information hiding.

146 CASE STUDY — THORN

8.6 Overview of the high-level syntax

In this section, we combine the concepts and annotations introduced thus far by presenting
the syntax of an import statement, imp, and a source file, file.

An import statement, imp, can specify an inclusion policy, inc (§8.5), replication
policy, rep (§8.3), generic arguments, ga (§8.4), module name aliasing, m ali (§8.2), and
the module’s repository override, m loc (§8.1).

imp ::= import statement
| inc import rep mn ga m ali m loc ; def.

A source file, file, can specify import statements, imp, definitions, def , and module
constructs, mc. Definitions include aliases, ali, visibility declarations, vis, and entities,
entity. A component, component , is classified as an entity. A module construct, mc, can
be prefixed with the value annotation, va, and can contain import statements, imp, file
inclusions, mem, and definitions, def .

file ::= source file
| imp def or mc def.

def or mc ::= definition or module construct
| def definition
| mc module construct

def ::= definition
| ali alias
| vis visibility declaration
| entity entity

entity ::= entity definition
| fd field declaration
| meth def method definition
| cld class definition
| component component
| . . . (other entities)

mc ::= module construct
| va module mn { impmem def } def.

8.7 Components and (de-)serialisation

Developers refer to entities with user names, which are the (possibly fully-qualified)
names in scope. For serialisation, it is important to be able to uniquely identify a type
across different runtimes. In this thesis, we assume the presence of an operation uniq,

COMPONENTS AND (DE-)SERIALISATION 147

which returns a unique name for any given user name of any definition.1 When we serialise
a value, we attach to the message the unique name corresponding to the value’s type.

Now, suppose that (i) a module, M, defines a class, List, (ii) modules A and B both im-
port their own instance of the module M, (iii) A and B re-export List under names AList
and BList, respectively, (iv) C imports both A and B, and (v) C receives a message:

// ======= M.thm =======

member List.th; // Class List is a member of module M.

// ======= A.thm =======

import own M; // A imports its own M.

alias AList = M.List;

AList: public; // List is re-exported as AList.

// ======= B.thm =======

import own M; // B imports its own M.

alias BList = M.List;

BList: public; // List is re-exported as BList.

// ======= C.thm =======

import A; // C imports A.

import B; // C imports B.

val msg = receive(); // C receives a message.

Suppose that the unique name received at the de-serialisation point (last line above) has
value u. The runtime will compare u to the unique names of types visible in the current
context. If a single match exists, the received value will assume the type corresponding to
that unique name. Otherwise, the runtime will throw an exception.

If u is equal to uniq(A.AList), then u is also equal to uniq(B.BList), since
A.AList and B.BList point to the same class definition. However, the types cor-
responding to A.AList and B.BList are incompatible, since they belong to different
module instances (and could so have different invariants by relying on different static
state). Therefore, we have to decide whether we want to de-serialise the received value
as a value of type A.AList, or as a value of type B.BList. To choose the latter, for
example, we must annotate the last line as follows:

val msg : B.BList = receive();

Now, there is no runtime ambiguity. The above syntax corresponds to the syntax of
the proposed gradual typing scheme for Thorn.

1The implementation of uniq is not important for this thesis. For more information on possible imple-
mentations, see work on Acute [45] and HashCaml [7].

148 CASE STUDY — THORN

8.8 Versions and other custom properties

The current design does not include module properties such as versions. Since the feature
will likely be added in the future, this section overviews our proposal for it.

As in the Java Module System, modules definitions will have many properties. Ver-
sions are an example of a property. When properties are specified, modules could be
looked up and instantiated according to values of their properties.

Our proposal for Thorn is that each property should be implemented as a class that im-
plements the Java’s Comparable interface. This would promote a total ordering among
values for a particular property. An ordering is important for choosing a single result
when loose property constraints are used. Constraints could be defined through constraint
classes, which could be extensions of a class like the one below.

abstract class ModuleConstraint<P> {

public Collection<P> filter(Collection<P> ps);

}

The filter method would be used to filter a collection of values for a property, i.e. to
narrow down the search for an appropriate module to import.

Versions would then be an instance of the above module property. For example, one
class would define the version property, Version, while another would implement the
version constraint, VersionConstraint. Java code for the latter would be:

class VersionConstraint extends ModuleConstraint<Version> {

. . . public Collection<Version> filter(Collection<Version> vs) {. . .} . . .

}

Versions could then be used as follows:

module MyModule; Version("3.1");

import MyOtherModule : VersionConstraint("5.2+");

8.9 Conclusion

In this chapter, we have sketched our design for Thorn’s module system. We found useful
combinations of features applicable to other module systems, and discovered a potential
hazard that comes with multiple module instances.

Thorn aims to support rapid prototyping. To that goal, we designed a module system
to be non-intrusive. We have (a) automatic, unnamed module definitions, (b) a small
difference between source files and module constructs, (c) just-in-time compilation that
allows easy executions, (d) optional overrides of imported modules’ locations to avoid

CONCLUSION 149

repositories altogether, and (e) implicit application of generic arguments. These do not
depend on any specific Thorn features, and could fairly easily be applied to JMS and
iJAM, with the exception of (b). Furthermore, a module construct can be moved to a
different source file without changing its semantics.

We use iJAM’s resolution algorithm for non-fully-qualified names, and allow the user
to start the same algorithm in any of the direct imports, instead, through the use of module-
prefixed type references. By using a few simple rules for namespace control, and by
promoting the use of module-local names, or names from direct imports only, we obtain
the following important properties: (i) no propagation of module names; (ii) the ability
to prevent propagation of entity names; (iii) a strong form of robustness against inter-
face evolution of the imported modules; and, (iv) a guarantee that every visible entity
can be accessed, and that a fully-qualified name is never ambiguous. Points (i-ii) en-
able strong namespace localisation, which, together with points (iii-iv), make the module
system highly scalable. Such namespace resolution can be applied to any language with
support for module-prefixed type references and module/entity aliasing, but is especially
useful for languages of which module visibility is not transitive (§1.1.5), and where non-
fully-qualified names can refer to entities in the imported modules.

In our module system for Thorn, a client module can include an imported module into
the same distribution package. With this feature in place, we can prevent all other modules
from importing the included module. As explained in §8.5, this leads to a strong form of
information hiding. This feature can easily be added to both JMS and iJAM.

When going through de-serialisation examples in Thorn, we noticed a problem that
can appear in any language that supports multiple module instances, including iJAM: in
the presence of multiple instances, a de-serialised value can match multiple types — even
though these types have the same definition, they are distinct, since they belong to different
module instances. We found that such ambiguities can be resolved through the use of
module-prefixed type annotations at de-serialisation points (§8.7).

To make it easier to implement distributed systems, Thorn defines components as lo-
gically independent units of computation. Since components do not share state, there can
be a “shared” module instance for every component. To improve performance, we defined
value modules (modules with final state) that are shared even across components.

9
Conclusion

In this thesis, we formalised a core of the Java Module System (JMS), found two key
deficiencies with it, and proposed and formalised our solutions for them. In the process,
we explored the details of better component-level information hiding, module-boundary
renaming, and module instance sharing between multiple applications. Finally, we ana-
lysed these properties within a Java-like language where module-prefixed type references
are permitted, and investigated marshalling in the context of multiple module instances.

We found that, apart from being unintuitive, JMS is not expressive enough to allow
its users to disambiguate any non-fully-qualified type name to any of the visible and ap-
plicable class definitions without modifying any of the imported modules. We show that
this problem arises from the module system’s lack of module-boundary renaming of types
(Chapter 5), or module-prefixed type references (Chapter 8) — we also explained that
selective importing is too weak to solve this problem. In both solutions, it is critical to
ensure distinctness of type names of both members and exports of module definitions.
We also observe that module-boundary renaming, combined with the reversal of the class
resolution order, arguably makes a substantial improvement to the robustness of module
definitions to external changes, which is critical for scalability of a module system.

As mentioned in the introduction, one the the key properties of a module system is
its localisation of influence for each module definition and instance. Above, we outline
how we improve information hiding while ensuring essential expressivity. This thesis also
shows that with a few annotations on the import statements, we allow the developer to
control type and data sharing of modules’ imports; having multiple instances of a single

152 CONCLUSION

module definition, the users can avoid conflicting invariants on a common import, as well
as contention due to parallel use of a single runtime structure. We localise the effect of
these annotations to direct imports only, which promotes the desired locality, but also
implies that the developer must trust the annotations set within the imports.

We discovered that the JMS provides only a weak form of information hiding, since
any module instance is free to access any other. iJAM improves on this, since it allows
encapsulation of static data through own module instances. Thorn enables a strong form
of information hiding through inclusion of imported modules in the same distribution
package, which prevents other modules from importing it directly. An overview of what
module system has which property (§1.2) is shown in Fig. 9.1 (page 155) — it includes
LJAM, iJAM, and Thorn; the properties listed are a subset of those in Fig. 1.5 (page 32).

We also observed that in the presence of multiple module instances, ambiguity can
arise during de-serialisation, since a serialised value can match multiple types at the re-
ceiving end. Although it would be easy to default all de-serialisation to a type of a specific
module instance, e.g. the first one syntactically declared, we discovered a way for de-
velopers to choose among the available module instances on a per-type basis.

The above paragraphs have already confirmed the first part of our ‘thesis’ (§1.3),
namely that the lack of explicit module interfaces together with the parent-then-self name
resolution leads to poor support for localisation of a module’s influence and for code re-
use, while the absence of module-prefixed references results in fragile and inexpressive
semantics at the user level. Now, we evaluate the second part of the ‘thesis,’ which states
that a rigorous formalisation of a programming language (and its add-ons):

• gives a valuable insight into the details of the semantics that can find illusive design
problems early (before release);

There are many subtle issues of the semantics that we would not have
noticed had we not done the rigorous formalisations and their proofs of
soundness. For example, JMS’s class resolution first searches the core
libraries to prevent the system classes from getting overridden. When
combined with module-boundary renaming, we lose the property of ‘tar-
get context equivalence for class lookups’ (Lemma 21, page 129), a prop-
erty that should intuitively hold. The falsity of this property was noticed
only once we failed to prove type soundness in Isabelle/HOL. The prop-
erty was re-established by enforcing a constraint, which prevents renam-
ing a class from a name already exported by the core library module.

• promotes a precise discussion of the definition;

This is evident throughout this document, but most obvious from the ex-
ample figures discussing the problems of LJAM (Chapter 5).

153

• allows important properties to be proven about the language;

We mechanically prove type soundness for all our formalisations — this
tells us that the programs in these languages will “not go wrong,” i.e. they
will never result in a malformed program state. However, it does not
entail that the semantics of these formalisations are what we want them
to be, or that they are useful in practice. We propose more properties that
can be proven on our formalisations as part of future work.

• is cost-effective, and can be done on the same timescale as the industrial design and
standardisation process.

The analysis of the draft documents, the design and the formalisations
of our languages, their evaluation, and the documentation took in total
about two man-years of work. From this, we can conclude that a large
software company could produce a formalisation for a complete defini-
tion of a general-purpose programming language within years, possibly
including mechanical proofs of a few important properties. Making such
a definition freely available, universities and research departments from
all over the world could contribute to it, and its proofs of properties.

The thesis (§1.3) also states that it is possible to modularise language definitions and
their proofs scripts into language modules. Although our languages are not structured
from truly independent modules, the potential for this is clear — we have achieved an
astonishing amount of language definition and proof script reuse (§6.6), where most of the
proof scripts “belong” to some part of the language definition.

The formalisation tools were key to this work. Ott found many consistency errors
with the definitions automatically. This gave more courage to experiment with alternative
definitions, and allowed compiler-error based regression testing. Ott also allows source-
level merging of language definition parts, which we make heavy use of — it is critical
here that Ott can detect dependencies among terms (even across different Ott files), and can
then correctly order them in the theorem prover (currently not also in the LATEX) output —
at the term level, however, Ott could use a few more features for definition reuse, such as
generic meta-terms. Empty productions are permitted, which allows Ott source files to be
closer to what one would normally write; however, if a possibly-empty term is added to a
production (of another term), then Ott will silently accept existing productions of this form
as special cases (where the possibly-empty term is empty). Although such consistency
problems can be prevented with clever use of the tool, they are almost definitely detected
when proving general properties within the theorem prover.

154 CONCLUSION

By mechanising the meta-theory in Isabelle/HOL, we found it easy to identify in-
correctly formulated judgements and incomplete relations. Since Ott generates the Isa-
belle/HOL definition of the language, we can check at any point whether the language
still satisfies the properties we have already proven, automatically. We observed that it is
wise to change the definition in the smallest possible steps that are expected to preserve
the properties — this way, proof regression is often trivial. We also learnt that the termin-
ation proof of a function should try to be independent of any property that can change (or
become invalid) through any process in the system. Finally, Isabelle/HOL made it clear,
time and time again, that “a rule with exceptions is incomplete.”

So far, the discussion with the developers of JMS regarding our work on iJAM has been
limited. The idea about module-boundary renaming and the reversal of class resolution
was dismissed for the time being, since the possibility of more ClassCastExceptions
being thrown (an issue that requires substantial test cases) has so far detracted from the
benefits gained. The feedback to multiple instances was more positive; an iJAM-like
approach was said to be included in a future version of JMS. Hopefully, this thesis will
have more impact: promoting better module systems for modern programming languages.

We conclude with a list of options for future work:

• formalise more features of JMS, such as versions, version constraints, and custom
import code (when executing such code, many definitions are not yet available,
while cyclic dependencies can arise easily, which makes it interesting to find prop-
erties that the code must satisfy for the language to remain type sound);

• prove more properties about the formalisations, for example that (1) accessibility
policies are guaranteed, and (2) with boundary renaming, any non-fully-qualified
type name can be disambiguated to refer to any visible alternative;

• extend LJ with support for type casts and static data, and formally prove properties
regarding class-cast exceptions and module instance invariants, respectively;

• investigate the benefits of a form of shallow validation for iJAM (§5.3);

• determine exactly what changes to the Java Virtual Machine are required to allow
class name aliasing (§7.6);

• extract reference implementations from LJAM and iJAM, and compare their execu-
tion traces to those of our reference implementation, as well as implementations of
JMS, on large examples;

• Lightweight Java (LJ) has already been used by others [14] — due to this success
story, we think it is worth investing some effort to simplify its definition further; and

• explore the theory of module systems for programming language definitions, i.e. a
module system that supports separate compilation, and where modules are reusable
parts of a language definition that also contain the corresponding parts of the proof
scripts; design such a module system for Ott.

155

MODULE(-LIKE) FEATURE

JA
V

A
C

L
A

S
S

E
S

JA
V

A
PA

C
K

A
G

E
S

JM
S

M
O

D
U

L
E

S

O
S

G
I

B
U

N
D

L
E

S

.N
E

T
A

S
S

E
M

B
L

IE
S

O
C

A
M

L
M

O
D

U
L

E
S

JI
A

Z
Z

I
U

N
IT

S

L
JA

M
M

O
D

U
L

E
S

IJ
A

M
M

O
D

U
L

E
S

T
H

O
R

N
M

O
D

U
L

E
S

P
R

O
P

E
R

T
Y

parametricity 3 7 7 7 7 3 3 7 7 3

module-prefixed type references 3 3 7 7 7 3 7 7 7 3

module instantiation policies 3 7 7 7 7 7 7 7 3 3

multiple files per module 7 3 3 3 3 3 3 3 3 3

non-transitive module visibility 7 7 7 7 7 3 7 7 3 3

optional re-exporting 7 7 3 3 7 3 3 3 3 3

renaming of exports by exporters 7 7 7 7 7 3 7 7 7 3

renaming of exports by importers 7 7 7 7 3 3 7 7 3 3

renaming of imports 7 7 7 7 3 3 7 7 7 3

runtime sharing among programs 7 7 3 3 7 7 7 3 3 3

selective exporting 3 3 3 3 3 3 3 3 3 3

sub-modules 3 7 7 7 7 3 3 7 7 3

sub-modules defined in own files 7 7 7 7 7 3 3 7 7 3

versioning 7 7 3 3 3 7 7 7 7 7

Figure 9.1: Overview of properties/features for our module systems in the context of a few
related module systems. Please note that (i) iJAM has non-transitive module visibility only
for its module instances, while Thorn also has it for its module definitions, and (ii) Thorn
supports runtime sharing among programs only for value modules.

A
Dependency among lemmas and theorems

The following figure shows the dependency among the lemmas and theorems mentioned
in the thesis. Numbers in the same box represent equivalent lemmas (but with different
proofs) from different chapters, e.g. 5 and 14 correspond to proofs of type reflexivity in
LJ (Chapter 3) and LJAM (Chapter 4), respectively.

The lines are thick if they are used within all formalisms, thin if they are used for
LJAM and iJAM only, and dashed if they are used for LJAM only. No other permutation
appears in our proofs.

The fact that we get LJAM-only dependencies, and not iJAM-only dependencies,
might seem strange, since iJAM is an extension of LJAM. This is due to extensive simpli-
fication of iJAM proofs; it seems likely that the same simplification can be achieved for
LJAM proofs, too. Therefore, the dashed lines are probably not essential.

158 DEPENDENCY AMONG LEMMAS AND THEOREMS

5 14

12 20

6 18

11 19

15 21

7 8 9

16

1 2

3

4

10

13 17

B
L

J’
s

pr
oo

fo
fp

ro
gr

es
s

in
Is

ab
el

le
/H

O
L

th
eo

re
m

pr
og

re
ss

:

[[(
Γ
,

co
nfi

g-
no

rm
al

P
L

H
S)
∈

w
f-

co
nfi

g;
S
6=

[]
]]

=
⇒
∃

co
nfi

g
′ .

(c
on

fig
-n

or
m

al
P

L
H

S,
co

nfi
g
′)
∈

r-
st

m
t

ap
pl

y(
ca

se
-t

ac
S)

ap
pl

y(
si

m
p)

ap
pl

y(
cl

ar
si

m
p)

ap
pl

y(
re

na
m

e-
ta

c
s

ss
)

ap
pl

y(
ca

se
-t

ac
s)

ap
pl

y(
er

ul
e-

ta
c[

1−
7]

w
f-

co
nfi

gE
)

ap
pl

y(
si

m
p-

al
l)

160 LJ’S PROOF OF PROGRESS IN ISABELLE/HOL

-
-
-

b
l
o
c
k

ap
pl

y(
fo

rc
e

in
tr

o:
r-

bl
oc

kI
[s

im
pl

ifi
ed

])

-
-
-

v
a
r
i
a
b
l
e

a
s
s
i
g
n
m
e
n
t

ap
pl

y(
cl

ar
si

m
p,

er
ul

e
w

f-
st

m
tE
,

si
m

p-
al

l,
cl

ar
si

m
p)

ap
pl

y(
fr

ul
e

ty
pe

-t
o-

va
l,

si
m

p)
ap

pl
y(

cl
ar

if
y)

ap
pl

y(
fr

ul
e

r-
va

r-
as

si
gn

I)
ap

pl
y(

fo
rc

e)

-
-
-

f
i
e
l
d

r
e
a
d

ap
pl

y(
cl

ar
si

m
p,

er
ul

e
w

f-
st

m
tE
,

si
m

p-
al

l,
cl

ar
si

m
p)

ap
pl

y(
er

ul
e

w
f-

va
rs

ta
te

E
)

ap
pl

y(
dr

ul
e-

ta
c

x
=

xa
in

bs
pe

c,
si

m
p

ad
d:

do
m

I)

ap
pl

y(
er

ul
e

w
f-

ob
je

ct
E

)
ap

pl
y(

cl
ar

si
m

p)
ap

pl
y(

fr
ul

e
r-

fie
ld

-r
ea

d-
np

eI
)

ap
pl

y(
fo

rc
e)

ap
pl

y(
cl

ar
si

m
p)

ap
pl

y(
er

ul
e-

ta
c

?a
3.

0
=

So
m

e
ty

in
st

y-
op

tio
n.

ca
se

s)
ap

pl
y(

cl
ar

si
m

p
sp

lit
:

op
tio

n.
sp

lit
s)

ap
pl

y(
er

ul
e

w
f-

he
ap

E
)

ap
pl

y(
dr

ul
e-

ta
c

x
=

oi
d

in
bs

pe
c,

si
m

p
ad

d:
do

m
I)

ap
pl

y(
cl

ar
si

m
p)

ap
pl

y(
re

na
m

e-
ta

c
x

oi
d

ty
-x

-s
ty

-x
-d

fie
ld

s-
oi

d
fs

)

ap
pl

y(
fr

ul
e

no
-fi

el
d-

hi
di

ng
,

si
m

p+
)

ap
pl

y(
dr

ul
e-

ta
c

x
=

fi
n

bs
pe

c,
si

m
p)

ap
pl

y(
cl

ar
si

m
p)

ap
pl

y(
er

ul
e

w
f-

ob
je

ct
E

)
ap

pl
y(

cl
ar

si
m

p,
fr

ul
e-

ta
c

H
=

H
in

r-
fie

ld
-r

ea
dI
,

si
m

p,
fo

rc
e)

+

-
-
-

f
i
e
l
d

w
r
i
t
e

ap
pl

y(
cl

ar
si

m
p,

er
ul

e
w

f-
st

m
tE
,

si
m

p-
al

l,
cl

ar
si

m
p)

ap
pl

y(
er

ul
e

w
f-

va
rs

ta
te

E
)

ap
pl

y(
fr

ul
e-

ta
c

x
=

x
in

bs
pe

c,
si

m
p

ad
d:

do
m

I)

ap
pl

y(
er

ul
e

w
f-

ob
je

ct
E

)
ap

pl
y(

cl
ar

si
m

p)
ap

pl
y(

fr
ul

e
r-

fie
ld

-w
ri

te
-n

pe
I)

ap
pl

y(
fo

rc
e)

ap
pl

y(
cl

ar
si

m
p)

ap
pl

y(
er

ul
e

st
y-

op
tio

n.
ca

se
s)

ap
pl

y(
cl

ar
si

m
p)

ap
pl

y(
re

na
m

e-
ta

c
ty

-y
ty

-f
)

ap
pl

y(
dr

ul
e-

ta
c

x
=

y
in

bs
pe

c,
si

m
p

ad
d:

do
m

I)
ap

pl
y(

cl
ar

si
m

p)

ap
pl

y(
er

ul
e

st
y-

op
tio

n.
ca

se
s)

ap
pl

y(
cl

ar
si

m
p

sp
lit

:
op

tio
n.

sp
lit

s)

ap
pl

y(
er

ul
e

w
f-

ob
je

ct
E

)
ap

pl
y(

cl
ar

si
m

p)

ap
pl

y(
fr

ul
e-

ta
c

H
=

H
an

d
y

=
y

in
r-

fie
ld

-w
ri

te
I,

si
m

p,
fo

rc
e)

+

161

-
-
-

c
o
n
d
i
t
i
o
n
a
l

b
r
a
n
c
h

ap
pl

y(
cl

ar
si

m
p,

er
ul

e
w

f-
st

m
tE
,

si
m

p-
al

l,
cl

ar
si

m
p)

ap
pl

y(
er

ul
e

di
sj

E
)

ap
pl

y(
fr

ul
e

ty
pe

-t
o-

va
l,

si
m

p,
cl

ar
if

y)
ap

pl
y(

ca
se

-t
ac

v
=

w
)

ap
pl

y(
fr

ul
e-

ta
c

y
=

y
in

r-
if

-t
ru

eI
,

fo
rc

e+
)

ap
pl

y(
fr

ul
e-

ta
c

y
=

y
in

r-
if

-f
al

se
I,

fo
rc

e+
)

ap
pl

y(
fr

ul
e

ty
pe

-t
o-

va
l,

si
m

p,
cl

ar
if

y)
ap

pl
y(

ca
se

-t
ac

v
=

w
)

ap
pl

y(
fr

ul
e-

ta
c

y
=

y
an

d
v

=
w

in
r-

if
-t

ru
eI
,

fo
rc

e+
)

ap
pl

y(
fr

ul
e-

ta
c

y
=

y
an

d
v

=
w

in
r-

if
-f

al
se

I,
fo

rc
e+

)

-
-
-

o
b
j
e
c
t

c
r
e
a
t
i
o
n

ap
pl

y(
cl

ar
si

m
p,

er
ul

e
w

f-
st

m
tE
,

si
m

p-
al

l,
cl

ar
si

m
p)

ap
pl

y(
re

na
m

e-
ta

c
cl

ct
x

ty
va

r)

ap
pl

y(
er

ul
e

st
y-

op
tio

n.
ca

se
s)

ap
pl

y(
cl

ar
si

m
p)

ap
pl

y(
re

na
m

e-
ta

c
ty

-c
lt

y-
va

r)

ap
pl

y(
si

m
p

ad
d:

is
-s

ty
-o

ne
-d

ef
sp

lit
:

op
tio

n.
sp

lit
s)

ap
pl

y(
re

na
m

e-
ta

c
pa

th
)

ap
pl

y(
fr

ul
e

fin
d-

pa
th

-fi
el

ds
)

ap
pl

y(
er

ul
e

ex
E

)

ap
pl

y(
fr

ul
e

fr
es

h-
oi

d)
ap

pl
y(

er
ul

e
ex

E
)

ap
pl

y(
fr

ul
e-

ta
c

H
=

H
an

d
L

=
L

an
d

va
r=

va
ra

nd
s-

lis
t=

ss
an

d
f-

lis
t=

fs
in

r-
ne

w
I[

si
m

pl
ifi

ed
])

ap
pl

y(
cl

ar
si

m
p

si
m

p
ad

d:
fie

ld
s-

f-
de

fs
pl

it:
op

tio
n.

sp
lit

s)
ap

pl
y(

as
su

m
pt

io
n)

ap
pl

y(
si

m
p)

ap
pl

y(
fo

rc
e)

-
-
-

m
e
t
h
o
d

c
a
l
l

ap
pl

y(
cl

ar
si

m
p,

er
ul

e
w

f-
st

m
tE
,

si
m

p-
al

l,
cl

ar
si

m
p)

ap
pl

y(
re

na
m

e-
ta

c
ss

y-
ty

-l
is

tx
ty

-x
-s

m
ty

-r
-s

va
r)

ap
pl

y(
er

ul
e

w
f-

va
rs

ta
te

E
)

ap
pl

y(
fr

ul
e-

ta
c

x
=

x
in

bs
pe

c,
si

m
p

ad
d:

do
m

I)
ap

pl
y(

cl
ar

si
m

p)

ap
pl

y(
er

ul
e

w
f-

ob
je

ct
E

)
ap

pl
y(

cl
ar

si
m

p)
ap

pl
y(

fr
ul

e
r-

m
ca

ll-
np

eI
)

ap
pl

y(
fo

rc
e)

ap
pl

y(
el

im
st

y-
op

tio
n.

ca
se

s)
ap

pl
y(

cl
ar

si
m

p
sp

lit
:

op
tio

n.
sp

lit
s)

ap
pl

y(
re

na
m

e-
ta

c
ty

-r
-s

ty
-v

ar
-s

ty
-x

-s
ty

-x
-d

fs
-x

)

ap
pl

y(
fr

ul
e

m
ty

pe
-t

o-
fin

d-
m

d,
si

m
p+

)
ap

pl
y(

cl
ar

si
m

p)

162 LJ’S PROOF OF PROGRESS IN ISABELLE/HOL

ap
pl

y(
fr

ul
e-

ta
c

A
=

do
m

L
an

d
i=

le
ng

th
vd

s
in

fr
es

h-
va

rs
)

ap
pl

y(
cl

ar
si

m
p)

ap
pl

y(
re

na
m

e-
ta

c
va

rs
′)

ap
pl

y(
fr

ul
e

ex
is

t-
lif

te
d-

va
lu

es
)

ap
pl

y(
si

m
p)

ap
pl

y(
cl

ar
if

y)
ap

pl
y(

fr
ul

e-
ta

c
va

rs
′ =

va
rs
′ i

n
fr

es
h-

x-
no

t-
in

-v
ar

s′
)

ap
pl

y(
er

ul
e

ex
E

)
ap

pl
y(

er
ul

e
co

nj
E

)

ap
pl

y(
su

bg
oa

l-
ta

c
∃

va
rs
.

va
rs

=
m

ap
(λ

vd
.

ca
se

vd
of

vd
-d

ef
cl

va
r⇒

va
r)

vd
s)

ap
pl

y(
er

ul
e

ex
E

)
ap

pl
y(

su
bg

oa
l-

ta
c

le
ng

th
va

rs
=

le
ng

th
vd

s)
ap

pl
y(

fr
ul

e
le

ng
th

-y
-t

y-
lis

t-
vs

)

ap
pl

y(
su

bg
oa

l-
ta

c
∃

T
.

T
=

(m
ap

-o
f(

zi
p

(m
ap

(λ
vd
.

ca
se

vd
of

vd
-d

ef
cl

va
r⇒

x-
va

rv
ar

)
vd

s)
(m

ap
x-

va
rv

ar
s′

))
)(

x-
th

is
7→

x
′)
)

ap
pl

y(
er

ul
e

ex
E

)

ap
pl

y(
fr

ul
e-

ta
c

H
=

H
an

d
P

=
P

an
d

m
et

h
=

m
an

d
ct

x
=

ct
x

an
d

cl
=

cl
-r

an
d

y
=

y
an

d
ty

=
ty

-x
-d

an
d

y-
cl

-v
ar

-v
ar
′ -v

-l
is

t=
zi

p
(m

ap
fs

ty
-t

y-
lis

t)
(z

ip
(m

ap
(λ

vd
.

ca
se

vd
of

vd
-d

ef
cl

va
r⇒

cl
)

vd
s)

(z
ip

va
rs

(z
ip

va
rs
′ v

s)
))

an
d

s′
′ -s
′ -l

is
t=

zi
p

(t
r-

ss
-f

T
ss
′)

ss
′ a

nd
va

r=
va

ra
nd

s-
lis

t=
ss

an
d

x
′ =

x
′ a

nd
T

=
T

in
r-

m
ca

llI
[s

im
pl

ifi
ed

])

ap
pl

y(
fo

rc
e)

ap
pl

y(
si

m
p)

ap
pl

y(
si

m
p)

ap
pl

y(
si

m
p

ad
d:

va
rs
′ -e

q)
ap

pl
y(

si
m

p)
ap

pl
y(

as
su

m
pt

io
n)

ap
pl

y(
si

m
p

ad
d:

va
rs
′ -e

q)
ap

pl
y(

cu
t-

ta
c

L
=

L
an

d
y-

ty
-l

is
t=

y-
ty

-l
is

ti
n

lif
t-

op
ts

-m
ap

pi
ng

)
ap

pl
y(

er
ul

e-
ta

c
x

=
vd

s
in

al
lE

)

ap
pl

y(
er

ul
e-

ta
c

x
=

va
rs

in
al

lE
)

ap
pl

y(
er

ul
e-

ta
c

x
=

va
rs
′ i

n
al

lE
)

ap
pl

y(
er

ul
e-

ta
c

x
=

vs
in

al
lE

)

ap
pl

y(
si

m
p)

ap
pl

y(
si

m
p)

ap
pl

y(
si

m
p)

ap
pl

y(
si

m
p

ad
d:

tr
an

sl
at

io
n-

eq
)

ap
pl

y(
si

m
p)

ap
pl

y(
fo

rc
e)

by
fo

rc
e+

C
Other relational definitions

C.1 LJ lookup rules

Class (find cld f)

find cld (P , ctx , fqn) = ctxcldopt class lookup

FC EMPTY

find cld ([], ctx , fqn) = null

FC CONS TRUE

1.P = cld cld2 .. cldk

2. cld = class dcl extends cl { fd meth def }
find cld (P , ctx , dcl) = (ctx , cld)

FC CONS FALSE

1. cld = class dcl ′ extends cl { fd meth def }
2. dcl 6= dcl ′

3.find cld (cld2 .. cldk , ctx , dcl) = ctxcldopt

find cld (cld cld2 .. cldk , ctx , dcl) = ctxcldopt

164 OTHER RELATIONAL DEFINITIONS

Type (find type f)

find type (P , ctx , cl) = τopt type lookup

FT OBJ

find type (P , ctx , Object) = Object

FT NULL

1.find cld (P , ctx , fqn) = null

find type (P , ctx , fqn) = null

FT DCL

1.find cld (P , ctx , dcl) = (ctx ′, cld)

find type (P , ctx , dcl) = ctx ′.dcl

Inheritance path – recursive part (find path rec f)

find path rec (P , ctx , cl , ctxcld) = ctxcldopt class path lookup (recursive part)

FPR OBJ

find path rec (P , ctx , Object, ctxcld) = ctxcld

FPR NULL

1. (¬acyclic clds P) ∨ find cld (P , ctx , fqn) = null

find path rec (P , ctx , fqn, ctxcld) = null

FPR FQN

1. acyclic clds P ∧ find cld (P , ctx , fqn) = (ctx ′, cld)

2. superclass name (cld) = cl

3.find path rec (P , ctx ′, cl , ctxcld@ [(ctx ′, cld)]) = ctxcldopt

find path rec (P , ctx , fqn, ctxcld) = ctxcldopt

Inheritance path (find path f)

find path (P , ctx , cl) = ctxcldopt class path lookup with a class name

FP DEF

1.find path rec (P , ctx , cl , []) = ctxcldopt

find path (P , ctx , cl) = ctxcldopt

LJ LOOKUP RULES 165

Inheritance path – for type (find path f)

find path (P , τ) = ctxcldopt class path lookup with a type

FPTY OBJ

find path (P , Object) = []

FPTY DCL

1.find path (P , ctx , dcl) = ctxcldopt

find path (P , ctx.dcl) = ctxcldopt

Fields in path (fields in path f)

fields in path (ctxcld) = f fields lookup in a class path

FIP EMPTY

fields in path ([]) = []

FIP CONS

1. class fields (cld) = clj fj ;
j

2.fields in path (ctxcld2 .. ctxcldk) = f

3. f
′
= fj

j
; f

fields in path ((ctx , cld) ctxcld2 .. ctxcldk) = f
′

Fields (fields f)

fields (P , τ) = f opt fields lookup in type τ

FIELDS NONE

1.find path (P , τ) = null

fields (P , τ) = null

FIELDS SOME

1.find path (P , τ) = ctxcld

2.fields in path (ctxcld) = f

fields (P , τ) = f

Methods in path (methods in path f)

methods in path (cld) = meth method names lookup in a path

MIP EMPTY

methods in path ([]) = []

MIP CONS

1. class methods (cld) = meth defl
l

2.meth defl = cll methl (vdl) {meth bodyl }
l

3.methods in path (cld2 .. cldk) = meth
′

4.meth = methl
l
; meth

′

methods in path (cld cld2 .. cldk) = meth

166 OTHER RELATIONAL DEFINITIONS

Methods (methods f)

methods (P , τ) = meth method names lookup in a type

METHODS METHODS

1.find path (P , τ) = (ctxk , cldk)
k

2.methods in path (cldk
k
) = meth

methods (P , τ) = meth

Field type in fields (ftype in fds f)

ftype in fds (P , ctx , fd , f) = τ⊥opt field type lookup in a list

FTIF EMPTY

ftype in fds (P , ctx , [], f) = null

FTIF CONS BOT

1.find type (P , ctx , cl) = null

ftype in fds (P , ctx , cl f ; fd2 .. fdk , f) = ⊥
FTIF CONS TRUE

1.find type (P , ctx , cl) = τ

ftype in fds (P , ctx , cl f ; fd2 .. fdk , f) = τ

FTIF CONS FALSE

1. f 6= f ′

2. ftype in fds (P , ctx , fd2 .. fdk , f ′) = τ⊥opt
ftype in fds (P , ctx , cl f ; fd2 .. fdk , f ′) = τ⊥opt

Field type in path (ftype in path f)

ftype in path (P , ctxcld, f) = τopt field type lookup in a path

FTIP EMPTY

ftype in path (P , [], f) = null

FTIP CONS BOT

1. class fields (cld) = fd

2. ftype in fds (P , ctx , fd , f) = ⊥
ftype in path (P , (ctx , cld) ctxcld2 .. ctxcldk , f) = null

FTIP CONS TRUE

1. class fields (cld) = fd

2. ftype in fds (P , ctx , fd , f) = τ

ftype in path (P , (ctx , cld) ctxcld2 .. ctxcldk , f) = τ

LJ LOOKUP RULES 167

FTIP CONS FALSE

1. class fields (cld) = fd

2. ftype in fds (P , ctx , fd , f) = null

3. ftype in path (P , ctxcld2 .. ctxcldk , f) = τopt

ftype in path (P , (ctx , cld) ctxcld2 .. ctxcldk , f) = τopt

Field type (ftype f)

ftype (P , τ , f) = τ ′ field type lookup

FTYPE

1.find path (P , τ) = ctxcld

2. ftype in path (P , ctxcld, f) = τ ′

ftype (P , τ , f) = τ ′

Method definition in list (find meth def in list f)

find meth def in list (meth def , meth) = meth defopt meth. def. lookup (list)

FMDIL EMPTY

find meth def in list ([], meth) = null

FMDIL CONS TRUE

1.meth def = cl meth (vd) {meth body }
find meth def in list (meth def meth def2 ..meth defk , meth) = meth def

FMDIL CONS FALSE

1.meth def = cl meth ′ (vd) {meth body } 2.meth 6= meth ′

3.find meth def in list (meth def2 ..meth defk , meth) = meth defopt

find meth def in list (meth def meth def2 ..meth defk , meth) = meth defopt

168 OTHER RELATIONAL DEFINITIONS

Method definition in path (find meth def in path f)

find meth def in path (ctxcld, meth) = ctxmeth defopt meth. def. lookup (path)

FMDIP EMPTY

find meth def in path ([], meth) = null

FMDIP CONS TRUE

1. class methods (cld) = meth def

2.find meth def in list (meth def , meth) = meth def

find meth def in path ((ctx , cld) ctxcld2 .. ctxcldk , meth) = (ctx , meth def)

FMDIP CONS FALSE

1. class methods (cld) = meth def

2.find meth def in list (meth def , meth) = null

3.find meth def in path (ctxcld2 .. ctxcldk , meth) = ctxmeth defopt

find meth def in path ((ctx , cld) ctxcld2 .. ctxcldk , meth) = ctxmeth defopt

Method definition (find meth def f)

find meth def (P , τ , meth) = ctxmeth defopt method def. lookup in a type

FMD NULL

1.find path (P , τ) = null

find meth def (P , τ , meth) = null

FMD OPT

1.find path (P , τ) = ctxcld

2.find meth def in path (ctxcld, meth) = ctxmeth defopt

find meth def (P , τ , meth) = ctxmeth defopt

LJAM LOOKUP RULES 169

Method type (mtype f)

mtype (P , τ , meth) = π method type lookup

MTYPE

1.find meth def (P , τ , meth) = (ctx , meth def)

2.meth def = cl meth (clk vark
k
) {meth body }

3.find type (P , ctx , cl) = τ ′

4.find type (P , ctx , clk) = τk
k

5. π = τk
k → τ ′

mtype (P , τ , meth) = π

C.2 LJAM lookup rules

Module definition – recursive part (find md rec f)

find md rec (RC , rn1, mn, nn) = rnmdcopt module def. lookup (recursive part)

FMR NULL

1.RC (rn) = null

find md rec (RC , rn, mn, nn) = null

FMR BOOTSTRAP NULL

1.RC (rn) = bootstrap repository {mdc ; φ }
2.find md in mds (mdc, mn) = null

find md rec (RC , rn, mn, nn) = null

FMR BOOTSTRAP

1.RC (rn) = bootstrap repository {mdc ; φ }
2.find md in mds (mdc, mn) = mdc

find md rec (RC , rn, mn, nn) = (rn, mdc)

FMR STANDARD FAIL

1.RC (rn1) = repository r child of rn2 {mdc ; φ }
2. size (dom RC) ≤ nn

find md rec (RC , rn1, mn, nn) = null

FMR STANDARD REC

1.RC (rn1) = repository r child of rn2 {mdc ; φ }
2. size (dom RC) > nn

3.find md rec (RC , rn2, mn, nn + 1) = (rn3, md
c)

find md rec (RC , rn1, mn, nn) = (rn3, md
c)

170 OTHER RELATIONAL DEFINITIONS

FMR STANDARD SELF

1.RC (rn1) = repository r child of rn2 {mdc ; φ }
2. size (dom RC) > nn

3.find md rec (RC , rn2, mn, nn + 1) = null

4.find md in mds (mdc, mn) = mdc

find md rec (RC , rn1, mn, nn) = (rn1, md
c)

FMR STANDARD NULL

1.RC (rn1) = repository r child of rn2 {mdc ; φ }
2. size (dom RC) > nn

3.find md rec (RC , rn2, mn, nn + 1) = null

4.find md in mds (mdc, mn) = null

find md rec (RC , rn1, mn, nn) = null

Module definition (find md f)

find md (RC , rn, mn) = rnmdcopt module def. lookup

FM DEF

1.find md rec (RC , rn, mn, 0) = rnmdcopt
find md (RC , rn, mn) = rnmdcopt

Class – core (find cld in core f)

find cld in core (P , fqn) = ctxcldopt class lookup in the core library module

FCIC NO REP EX

1.RC (bootstrap r) = null

find cld in core ((RC , MH), fqn) = null

FCIC NOT BOOTSTRAP EX

1.RC (bootstrap r) = repository r child of rn {mdc ; φ }
find cld in core ((RC , MH), fqn) = null

FCIC NO CORE EX

1.RC (bootstrap r) = bootstrap repository {mdc ; φ }
2.find md in mds (mdc, core m) = null

find cld in core ((RC , MH), fqn) = null

LJAM LOOKUP RULES 171

FCIC NO CORE MI EX

1.RC (bootstrap r) = bootstrap repository {mdc ; φ }
2.find md in mds (mdc, core m) = mdc

3. φ (mdc) = null

find cld in core ((RC , MH), fqn) = null

FCIC NO MDMIS EX

1.RC (bootstrap r) = bootstrap repository {mdc ; φ }
2.find md in mds (mdc, core m) = mdc

3. φ (mdc) = mi 4.MH (mi) = null

find cld in core ((RC , MH), fqn) = null

FCIC FALSE

1.RC (bootstrap r) = bootstrap repository {mdc ; φ }
2.find md in mds (mdc, core m) = mdc

3. φ (mdc) = mi

4.MH (mi) = (module mn { cldm fqn }, mi)
5.find cld in module (cld, fqn) = null

find cld in core ((RC , MH), fqn) = null

FCIC TRUE

1.RC (bootstrap r) = bootstrap repository {mdc ; φ }
2.find md in mds (mdc, core m) = mdc

3. φ (mdc) = mi

4.MH (mi) = (module mn { cldm fqn }, mi)
5.find cld in module (cld, fqn) = cld

6.package name (cld) = pn

find cld in core ((RC , MH), fqn) = (mi.pn, cld)

Class – module (find cld in module f)

find cld in module (cld, fqn) = cldopt class lookup in an import

FCIM EMPTY

find cld in module ([], fqn) = null

FCIM NULL

1.¬distinct fqns (cld cld2 .. cldk)

find cld in module (cld cld2 .. cldk , fqn) = null

172 OTHER RELATIONAL DEFINITIONS

FCIM CONS TRUE

1.distinct fqns (cld cld2 .. cldk)

2. cld = package pn ; public class dcl extends cl { fd meth def }
find cld in module (cld cld2 .. cldk , pn.dcl) = cld

FCIM CONS FALSE

1.distinct fqns (cld cld2 .. cldk)

2. cld = package pn ′ ; am class dcl ′ extends cl { fd meth def }
3. pn 6= pn ′ ∨ am 6= public ∨ dcl 6= dcl ′

4.find cld in module (cld2 .. cldk , pn.dcl) = cldopt

find cld in module (cld cld2 .. cldk , pn.dcl) = cldopt

Class – imports (find cld in imports f)

find cld in imports (MH , mi, fqn) = ctxcldopt class lookup in imports

FCII EMPTY

find cld in imports (MH , [], fqn) = null

FCII NULL

1.¬ (acyclic mh MH ∧ mi ∈ dom (MH) ∧ mi2 ..mik ⊆ dom (MH))

find cld in imports (MH , mi mi2 ..mik , fqn) = null

FCII SKIP

1. acyclic mh MH ∧ MH (mi) = (md , mi) ∧ mi2 ..mik ⊆ dom (MH)

2.md = module mn { cldm fqn } ∧ fqn /∈ fqn

3.find cld in imports (MH , mi2 ..mik , fqn) = ctxcldopt

find cld in imports (MH , mi mi2 ..mik , fqn) = ctxcldopt
FCII REC

1. acyclic mh MH ∧ MH (mi) = (md , mi) ∧ mi2 ..mik ⊆ dom (MH)

2.md = module mn { cldm fqn } ∧ fqn ∈ fqn

3.find cld in imports (MH , mi, fqn) = ctxcld

find cld in imports (MH , mi mi2 ..mik , fqn) = ctxcld

FCII SELF

1. acyclic mh MH ∧ MH (mi) = (md , mi) ∧ mi2 ..mik ⊆ dom (MH)

2.md = module mn { cldm fqn } ∧ fqn ∈ fqn

3.find cld in imports (MH , mi, fqn) = null

4.find cld in module (cld, fqn) = cld ∧ package name (cld) = pn

find cld in imports (MH , mi mi2 ..mik , fqn) = (mi.pn, cld)

LJAM LOOKUP RULES 173

FCII NEXT

1. acyclic mh MH ∧ MH (mi) = (md , mi) ∧ mi2 ..mik ⊆ dom (MH)

2.md = module mn { cldm fqn } ∧ fqn ∈ fqn

3.find cld in imports (MH , mi, fqn) = null

4.find cld in module (cld, fqn) = null

5.find cld in imports (MH , mi2 ..mik , fqn) = ctxcldopt

find cld in imports (MH , mi mi2 ..mik , fqn) = ctxcldopt

Class – self (find cld in self f)

find cld in self (cld, pn, fqn) = cldopt class lookup in the same module

FCIS EMPTY

find cld in self ([], pn, fqn) = null

FCIS NULL

1.¬distinct fqns (cld cld2 .. cldk)

find cld in self (cld cld2 .. cldk , pn, fqn) = null

FCIS CONS TRUE

1.distinct fqns (cld cld2 .. cldk)

2. cld = package pn ′ ; am class dcl extends cl { fd meth def }
3. pn = pn ′ ∨ am = public

find cld in self (cld cld2 .. cldk , pn, pn ′.dcl) = cld

FCIS CONS FALSE

1.distinct fqns (cld cld2 .. cldk)

2. cld = package pn ′′ ; am class dcl ′ extends cl { fd meth def }
3. (pn 6= pn ′ ∧ am 6= public) ∨ pn ′ 6= pn ′′ ∨ dcl 6= dcl ′

4.find cld in self (cld2 .. cldk , pn, pn ′.dcl) = cldopt

find cld in self (cld cld2 .. cldk , pn, pn ′.dcl) = cldopt

174 OTHER RELATIONAL DEFINITIONS

Class (find cld f)

find cld (P , ctx , fqn) = ctxcldopt class lookup

FC CORE

1.find cld in core (P , fqn) = ctxcld

find cld (P , ctx , fqn) = ctxcld

FC NULL

1.find cld in core ((RC , MH), fqn) = null

2.MH (mi) = null

find cld ((RC , MH), mi.pn, fqn) = null

FC IMPORTS

1.find cld in core ((RC , MH), fqn) = null

2.MH (mi) = (md , mi)

3.md = module mn { cldm fqn }
4.find cld in imports (MH , mi, fqn) = ctxcld

find cld ((RC , MH), mi.pn, fqn) = ctxcld

FC SELF

1.find cld in core ((RC , MH), fqn) = null

2.MH (mi) = (md , mi)

3.md = module mn { cldm fqn }
4.find cld in imports (MH , mi, fqn) = null

5.find cld in self (cld, pn, fqn) = cld

6.package name (cld) = pn ′

find cld ((RC , MH), mi.pn, fqn) = (mi.pn ′, cld)

FC FAIL

1.find cld in core ((RC , MH), fqn) = null

2.MH (mi) = (md , mi)

3.md = module mn { cldm fqn }
4.find cld in imports (MH , mi, fqn) = null

5.find cld in self (cld, pn, fqn) = null

find cld ((RC , MH), mi.pn, fqn) = null

LJAM CONTEXT INSERTION RULES 175

C.3 LJAM context insertion rules

Context insertion for a statement

`ctx s
c s context insertion for a statement

CI S BLOCK

1.`ctx sck sk
k

`ctx { sck
k } { sk

k }

CI S VAR ASSIGN

`ctx var = x ; var = x ;

CI S FIELD READ

`ctx var = x . f ; var = x . f ;

CI S FIELD WRITE

`ctx x . f = y ; x . f = y ;

CI S IF

1. `ctx s
c
1 s1 2. `ctx s

c
2 s2

`ctx if (x == y) sc1 else sc2 if (x == y) s1 else s2

CI S MCALL

`ctx var = x .meth (yk
k) ; var = x .meth (yk

k) ;

CI S NEW

`ctx var = new cl (); var = newctxcl();

Context insertion for a method definition

`ctx meth def c meth def context insertion for method def.’s

CI METH DEF

1.`ctx sc s
k

`ctx cl meth (vd) { sck
k
return y ; } cl meth (vd) { s k return y ; }

Context insertion for a class definition

`mi cld
c cld context insertion for class def.’s

CI CLD

1. cldc = package pn ; am class dcl extends cl { fd meth def c
k

k }
2.`mi.pn meth def c

k meth defk
k

3. cld = package pn ; am class dcl extends cl { fd meth defk
k }

`mi cld
c cld

176 OTHER RELATIONAL DEFINITIONS

Context insertion for a module definition

`mi md
c md module def. translation

CI MODULE

1.`mi cldck cldk
k

`mi module mn { cldck
k
m fqn } module mn { cldk

k
m fqn }

C.4 iJAM lookup rules

Class (find cld f)

find cld (P , ctx , fqn) = ctxcldopt class lookup

FC ERR

1.¬no core renaming P

find cld (P , ctx , fqn) = null

FC CORE

1.no core renaming P

2.find cld in core (P , fqn) = ctxcld

find cld (P , ctx , fqn) = ctxcld

FC NULL

1.no core renaming (RC , MH)

2.find cld in core ((RC , MH), fqn) = null

3.MH (mi) = null

find cld ((RC , MH), mi.pn, fqn) = null

FC SELF

1.no core renaming (RC , MH)

2.find cld in core ((RC , MH), fqn) = null

3.MH (mi) = (md , mibr)

4.md = repl module mn { cld impk
k

fqn }
5.find cld in self (cld, pn, fqn) = cld

6.package name (cld) = pn ′

find cld ((RC , MH), mi.pn, fqn) = (mi.pn ′, cld)

IJAM LOOKUP RULES 177

FC IMPORTS

1.no core renaming (RC , MH)

2.find cld in core ((RC , MH), fqn) = null

3.MH (mi) = (md , mibr)

4.md = repl module mn { cld impk
k

fqn }
5.find cld in self (cld, pn, fqn) = null

6.find cld in imports (MH , mibr, fqn) = ctxcldopt

find cld ((RC , MH), mi.pn, fqn) = ctxcldopt

Class – imports (find cld in imports f)

find cld in imports (MH , mibr, fqn) = ctxcldopt class lookup in imports

FCII EMPTY

find cld in imports (MH , [], fqn) = null

FCII NULL

1.¬

(
acyclic mh MH ∧ mi ∈ dom (MH) ∧
mis of (mibr2 ..mibrk) ⊆ dom (MH)

)
find cld in imports (MH , mi br mibr2 ..mibrk , fqn) = null

FCII SKIP

1.

(
acyclic mh MH ∧ MH (mi) = (md , mibr) ∧
mis of (mibr2 ..mibrk) ⊆ dom (MH)

)

2.

((
md = repl module mn { cld impj

j
fqn } ∧ br [fqn] /∈ fqn

)
∨

(fqn /∈ dom (br) ∧ fqn ∈ ran (br))

)
3.find cld in imports (MH , mibr2 ..mibrk , fqn) = ctxcldopt

find cld in imports (MH , mi br mibr2 ..mibrk , fqn) = ctxcldopt
FCII SELF

1.

(
acyclic mh MH ∧ MH (mi) = (md , mibr) ∧
mis of (mibr2 ..mibrk) ⊆ dom (MH)

)

2.

((
md = repl module mn { cld impj

j
fqn } ∧ br [fqn] ∈ fqn

)
∧

(fqn ∈ dom (br) ∨ fqn /∈ ran (br))

)
3.find cld in module (cld, br [fqn]) = cld ∧ package name (cld) = pn

find cld in imports (MH , mi br mibr2 ..mibrk , fqn) = (mi.pn, cld)

178 OTHER RELATIONAL DEFINITIONS

FCII REC

1.

(
acyclic mh MH ∧ MH (mi) = (md , mibr) ∧
mis of (mibr2 ..mibrk) ⊆ dom (MH)

)

2.

((
md = repl module mn { cld impj

j
fqn } ∧ br [fqn] ∈ fqn

)
∧

(fqn ∈ dom (br) ∨ fqn /∈ ran (br))

)
3.find cld in module (cld, br [fqn]) = null

4.find cld in imports (MH , mibr, br [fqn]) = ctxcld

find cld in imports (MH , mi br mibr2 ..mibrk , fqn) = ctxcld

FCII NEXT

1.

(
acyclic mh MH ∧ MH (mi) = (md , mibr) ∧
mis of (mibr2 ..mibrk) ⊆ dom (MH)

)

2.

((
md = repl module mn { cld impj

j
fqn } ∧ br [fqn] ∈ fqn

)
∧

(fqn ∈ dom (br) ∨ fqn /∈ ran (br))

)
3.find cld in module (cld, br [fqn]) = null

4.find cld in imports (MH , mibr, br [fqn]) = null

5.find cld in imports (MH , mibr2 ..mibrk , fqn) = ctxcldopt

find cld in imports (MH , mi br mibr2 ..mibrk , fqn) = ctxcldopt

D
iJAM example Java source code

D.1 XMLParser.Parser

public class Parser {

private static int instances = 0;

public final int instance;

public Parser() {

instance = ++instances;

}

}

D.2 XSLT.Config

public class Config {

public void edit() {

System.out.println("XSLT::Config using " + new Parser().instance

+ ". instance of Parser.");

}

}

180 IJAM EXAMPLE JAVA SOURCE CODE

D.3 ServletEngine.Config

public class Config {

public void edit() {

System.out.println("ServletEngine::Config using "

+ new Parser().instance + ". instance of Parser.");

}

}

D.4 ServletEngine.UnitTest

public class UnitTest {

public void run() {

System.out.println("ServletEngine::UnitTest complete.");

}

}

D.5 WebCalendar.UnitTest

public class UnitTest {

public void run() {

System.out.println("WebCalendar::UnitTest complete.");

}

}

D.6 WebCalendar.Main

public class Main {

public static void main(String[] args) {

new UnitTest().run();

new XSLT_Config().edit();

new Config().edit();

}

}

Bibliography

[1] The Coq Proof Assistant. http://coq.inria.fr/. (Cited on pages 34 and 38.)

[2] HOL-4. http://hol.sourceforge.net. (Cited on pages 34 and 38.)

[3] Isabelle 2008. http://isabelle.in.tum.de/. (Cited on pages 34, 35, 37, 38, 39, and 58.)

[4] Twelf. http://www.cs.cmu.edu/∼twelf/. (Cited on page 34.)

[5] Martı́n Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer
Science. Springer, 1996. (Cited on page 24.)

[6] Gavin Bierman, Matthew J. Parkinson, and Andrew Pitts. MJ: An Imperative Core
Calculus for Java and Java with Effects. Technical Report 563, Computer Laboratory,
University of Cambridge, April 2003. (Cited on page 57.)

[7] John Billings, Peter Sewell, Mark Shinwell, and Rok Strniša. Type-Safe Distributed
Programming for OCaml. In Proceedings of Workshop on ML, pages 20–31. ACM
Press, September 2006. (Cited on page 147.)

[8] Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund, Gregor Richards, Rok
Strniša, Jan Vitek, and Tobias Wrigstad. Thorn—Robust, Concurrent, Extensible
Scripting on the JVM. In Proceedings of OOPSLA, volume 42(10) of ACM SIGPLAN
Notices, pages 499–514. ACM Press, October 2007. (Cited on pages 37 and 139.)

[9] Gilad Bracha and William R. Cook. Mixin-based Inheritance. In Proceedings of
OOPSLA, volume 25(10) of ACM SIGPLAN Notices, pages 303–311. ACM Press,
October 1990. (Cited on page 57.)

[10] Manfred Broy and Ernst Denert, editors. Software Pioneers: Contributions to Soft-
ware Engineering. Springer, 2002. (Cited on page 23.)

[11] Alex Buckley. Flexible Dynamic Linking. PhD thesis, Imperial College London,
February 2007. (Cited on page 49.)

182 BIBLIOGRAPHY

[12] John Corwin, David F. Bacon, David Grove, and Chet Murthy. MJ: A Rational
Module System for Java and its Applications. In Proceedings of OOPSLA, volume
38(11) of ACM SIGPLAN Notices, pages 241–254. ACM Press, November 2003.
(Cited on page 84.)

[13] Karl Crary, Robert Harper, and Sidd Puri. What is a Recursive Module? In Proceed-
ings of PLDI, volume 34(5) of ACM SIGPLAN Notices, pages 50–63. ACM Press,
May 1999. (Cited on page 24.)

[14] Benjamin Delaware, William R. Cook, and Don Batory. A Machine-Checked Model
of Safe Composition. http://www.cs.utexas.edu/∼bendy/featurejava.php, October
2008. (Cited on pages 35, 41, 58, 84, and 154.)

[15] MSDN’s .NET Framework Developer’s Guide. Assemblies in the Common Lan-
guage Runtime. http://msdn.microsoft.com/, 2008. (Cited on page 47.)

[16] Sophia Drossopoulou and Susan Eisenbach. The Java Type System is Sound - Prob-
ably. In Proceedings of ECOOP, volume 1241 of LNCS. Springer, June 1997. (Cited
on page 36.)

[17] Len Erlikh. Leveraging Legacy System Dollars for E-Business. IT Professional, 2
(3):17–23, 2000. (Cited on page 34.)

[18] Matthew Flatt and Matthias Felleisen. Units: Cool Modules for HOT Languages.
In Proceedings of PLDI, volume 33(5) of ACM SIGPLAN Notices, pages 236–248.
ACM Press, May 1998. (Cited on page 50.)

[19] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The JavaTM Language Spe-
cification. Sun Microsystems, Inc., Third edition, May 2005. (Cited on pages 24,
25, 41, and 57.)

[20] Florian Haftmann. Code generation from Isabelle/HOL theories, November 2007.
(Cited on page 84.)

[21] Richard S Hall. OSGi and Gravity Service Binder Tutorial. http://oscar-osgi.
sourceforge.net/tutorial/, 2003. (Cited on page 43.)

[22] Robert Harper and Benjamin C Pierce. Design Considerations for ML-Style Module
Systems. In Benjamin C Pierce, editor, Advanced Topic in Types and Programming
Languages, pages 293–346. MIT Press, 2005. (Cited on page 24.)

[23] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A
Minimal Core Calculus for Java and GJ. In Proceedings of OOPSLA, volume 34(10)

BIBLIOGRAPHY 183

of ACM SIGPLAN Notices, pages 132–146. ACM Press, October 1999. (Cited on
pages 36, 41, 57, and 69.)

[24] INRIA. Objective Caml. http://caml.inria.fr/ocaml/, 2008. Version 3.11. (Cited on
pages 24, 37, and 49.)

[25] Gerwin Klein and Tobias Nipkow. A Machine-Checked Model for a Java-Like Lan-
guage, Virtual Machine and Compiler. TOPLAS, 28(4):619–695, July 2006. (Cited
on page 41.)

[26] Viswanathan Kodaganallur. Incorporating Language Processing into Java Applica-
tions: A JavaCC Tutorial. IEEE Software, 21(4):70–77, 2004. (Cited on page 131.)

[27] Daniel K. Lee, Karl Crary, and Robert Harper. Towards a Mechanized Metatheory
of Standard ML. In Proceedings of POPL, volume 42(1) of ACM SIGPLAN Notices,
pages 173–184. ACM Press, January 2007. (Cited on page 41.)

[28] Xavier Leroy. Java bytecode verification: algorithms and formalizations. Journal of
Automated Reasoning, 30(3–4):235–269, 2003. (Cited on page 24.)

[29] Sheng Liang and Gilad Bracha. Dynamic Class Loading in the Java Virtual Machine.
In Proceedings of OOPSLA, pages 36–44, October 1998. (Cited on page 28.)

[30] David MacQueen. Modules for Standard ML. In Proceedings of LFP, pages 198–
207. ACM Press, August 1984. (Cited on pages 24 and 144.)

[31] Jacob Matthews and Robert Bruce Findler. An operational semantics for R5RS
Scheme. In Proceedings of SFP, ACM SIGPLAN Notices, pages 41–54. ACM Press,
September 2005. (Cited on pages 41 and 50.)

[32] Sean McDirmid, Matthew Flatt, and Wilson Hsieh. Jiazzi: New Age Components for
Old Fashioned Java. In Proceedings of OOPSLA, volume 36(11) of ACM SIGPLAN
Notices, pages 211–222. ACM Press, November 2001. (Cited on page 50.)

[33] C# Specification. Microsoft, 2.0 edition, September 2005. (Cited on pages 24
and 41.)

[34] Robin Milner, Mads Tofte, and Robert Harper. The definition of Standard ML. MIT
Press, 1990. (Cited on pages 24 and 41.)

[35] Tobias Nipkow and David von Oheimb. Java`ight is Type-Safe — Definitely. In Pro-
ceedings of POPL, ACM SIGPLAN Notices, pages 161–170. ACM Press, January
1998. (Cited on page 41.)

184 BIBLIOGRAPHY

[36] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, June 2008. (Cited on page 63.)

[37] Michael Norrish. C Formalized in HOL. PhD thesis, University of Cambridge, 1998.
(Cited on page 41.)

[38] About the OSGi Service Platform. OSGiTM Alliance, 4.1 edition, November 2005.
(Cited on page 42.)

[39] Scott Owens. A Sound Semantics for OCamllight. In Proceedings of ESOP, volume
4960 of LNCS, pages 1–15. Springer, March 2008. (Cited on page 41.)

[40] David L. Parnas. On the Criteria to be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12), December 1972. (Cited on page 23.)

[41] Simon Peyton Jones. Special Issue: Haskell 98 Language and Libraries. Journal of
Functional Programming, 13, January 2003. (Cited on page 24.)

[42] The Apache Jakarta Project. Byte Code Engineering Library, June 2006. Version
5.2. (Cited on page 137.)

[43] John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures.
In Proceedings of LICS, pages 55–74. IEEE Computer Society, July 2002. (Cited on
page 57.)

[44] Dennis Ritchie. The Development of the C Language. In HOPL Preprints, pages
201–208, 1993. (Cited on page 24.)

[45] Peter Sewell, James J. Leifer, Keith Wansbrough, Francesco Zappa Nardelli, Mair
Allen-Williams, Pierre Habouzit, and Viktor Vafeiadis. Acute: High-level program-
ming language design for distributed computation. In Proceedings of ICFP, volume
40(9) of ACM SIGPLAN Notices, pages 15–26. ACM Press, September 2005. (Cited
on page 147.)

[46] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas
Ridge, Susmit Sarkar, and Rok Strniša. Ott: Effective Tool Support for the Work-
ing Semanticist. In Proceedings of ICFP, volume 42(9) of ACM SIGPLAN Notices,
pages 1–12. ACM Press, October 2007. (Cited on pages 34, 35, 37, 38, and 58.)

[47] TIOBE Software. TIOBE Programming Community Index. http://www.tiobe.com/
index.php/content/paperinfo/tpci/index.html, March 2009. (Cited on page 25.)

[48] Rok Strniša. Fixing the Java Module System, in Theory and in Practice. In Proceed-
ings of FTfJP, pages 88–99, July 2008. (Cited on page 37.)

BIBLIOGRAPHY 185

[49] Rok Strniša and Matthew J. Parkinson. Lightweight Java (LJ). http://www.cl.cam.
ac.uk/research/pls/javasem/lj/, September 2006. (Cited on page 57.)

[50] Rok Strniša, Peter Sewell, and Matthew J. Parkinson. The Java Module System:
Core Design and Semantic Definition. In Proceedings of OOPSLA, volume 42(10)
of ACM SIGPLAN Notices, pages 499–514. ACM Press, October 2007. (Cited on
page 37.)

[51] Sun Microsystems, Inc. JSR-277: JavaTM Module System. http://jcp.org/en/jsr/
detail?id=277, October 2006. Early Draft. (Cited on pages 25, 35, 85, 86, 89, 90,
109, and 118.)

[52] Sun Microsystems, Inc. JSR-294: Improved Modularity Support in the JavaTM Pro-
gramming Language. http://jcp.org/en/jsr/detail?id=294, 2007. (Cited on pages 25,
35, 86, and 109.)

[53] Sun Microsystems, Inc. JavaTM SE 7. https://jdk7.dev.java.net/, 2009. In develop-
ment. (Cited on page 25.)

[54] Sun Microsystems, Inc. OpenJDK: Modules project. http://openjdk.java.net/
projects/modules/, 2009. (Cited on page 25.)

[55] Don Syme. Proving Java Type Soundness. In Formal Syntax and Semantics of Java,
pages 83–118. Springer, 1999. (Cited on page 41.)

[56] Macin Zalewski. Generic Programming with Concepts. PhD thesis, Chalmers Uni-
versity of Technology, November 2008. (Cited on page 41.)

Index

administrator action, 89

bytecode-compatibility
backward ∼, 23
forward ∼, 23

ClassCastException, 109
classloader, 25

system ∼, 26
compilation

cut-off ∼, 22
incremental ∼, 22
separate ∼, 22

definite descriptor, 61

encapsulation, 22

functor, 22, 31

iJAM, 119
information hiding, 29

instance-based ∼, 117
strong ∼, 143
weak ∼, 117

inheritance, 22
inheritance path, 60
ι, see definite descriptor
Isabelle/HOL, 56

JAR hell, 26
Java Module System, 23
JMS, see Java Module System

LJ, 55
localised influence, 31

meta production, 59
module, 21

client ∼, 22
core ∼, 28
∼ definition, 24
first-class ∼, 31
∼ hierarchy, 89
included ∼, 143
∼ instance, 27
language ∼, 151
sub ∼, 31
∼ system, 21
value ∼, 142

name
∼ resolution algorithm, 31
unique ∼, 145
user ∼, 144

non-transitive module visibility, 31

optional re-exporting, 25, 31
Ott, 56

RC , see repository context
renaming

module-boundary ∼, 112
∼ of exports
∼ by exporters, 31
∼ by importers, 31
∼ of imports, 31

repository, 28
bootstrap ∼, 28
∼ context, 89

188 INDEX

selective
∼ exporting, 25
∼ importing, 112

separate compilation, 31
subtyping, 67
superpackage, see module definition
syntax

inner ∼, 59
user ∼, 57

Thorn, 137
Thorn component, 141
type, 65

abstract data ∼, 21
∼ checking, 65
∼ environment, 66
∼ error, 65
primary ∼, 99
∼ soundness, 74
∼ system, 65
valid ∼, 67

validation, 116
deep ∼, 116
shallow ∼, 116

versioning, 31

well-formed program change, 105

	Abstract
	Declaration
	Acknowledgements
	Contents
	List of figures
	List of symbols
	Introduction
	The Java Module System
	The WebCalendar example
	Component-level information hiding
	Dealing with JAR hell
	Using the module system
	A short summary of JMS's features

	Desirable properties of a module system
	Thesis
	Contribution
	Collaboration
	Preliminaries
	A brief introduction to Ott
	A brief introduction to Isabelle/HOL

	Related work
	Verified language formalisms
	Module systems
	A short overview of JMS
	OSGi
	.NET
	OCaml
	Jiazzi
	General overview

	Lightweight Java (LJ)
	Example program
	Syntax
	Operational semantics
	Configuration
	Lookup functions
	Statement reduction
	Variable translation

	Type system
	Type
	Type environment
	Subtyping
	Valid type
	Type reflexivity
	Type transitivity

	Type checking
	Lookup functions
	Well-formedness rules

	Proof of type soundness
	Configuration well-formedness
	Helper lemmas
	Progress
	Type preservation

	Conclusion

	Lightweight Java Module System (LJAM)
	An informal description
	Syntax
	Compile-time code vs. runtime code
	LJAM's context (ctx)
	User syntax
	Inner syntax

	Operational semantics
	Lookup functions
	Administrator actions
	Context insertion

	Type system
	Type
	Subtyping
	Type reflexivity
	Type transitivity

	Type checking
	Proof of type soundness
	Progress
	Type preservation

	Recent changes to the Java Module System
	Conclusion

	Problems with the Java Module System
	Class resolution
	Unintuitive class resolution
	Inexpressive class resolution

	Inflexible module instantiation
	Shallow validation
	A stronger form of information hiding
	Conclusion

	Improved Java Module System (iJAM)
	Syntax
	User syntax
	Inner syntax

	Operational semantics
	Adapted class resolution
	Replication policies

	Type system
	Type checking
	Proof of type soundness
	Well-formedness for boundary renaming

	Reuse within the definitions and proof scripts

	Implementation
	Overview
	Creation of module instances
	Class resolution
	Making the JVM use our code
	Example runs
	A limitation
	Conclusion

	Case study — Thorn
	Non-intrusiveness
	Namespace control & robustness
	Sharing vs. isolation
	Module-level generics
	Module archives
	Overview of the high-level syntax
	Components and (de-)serialisation
	Versions and other custom properties
	Conclusion

	Conclusion
	Dependency among lemmas and theorems
	LJ's proof of progress in Isabelle/HOL
	Other relational definitions
	LJ lookup rules
	LJAM lookup rules
	LJAM context insertion rules
	iJAM lookup rules

	iJAM example Java source code
	XMLParser.Parser
	XSLT.Config
	ServletEngine.Config
	ServletEngine.UnitTest
	WebCalendar.UnitTest
	WebCalendar.Main

	Bibliography
	Index

